Ultrasonic flowmeters

SITRANS FUS1010 IP65 NEMA 4X & IP66 NEMA 7 Gross Volume 7ME353x-2, x=0, 3

Operating Instructions - January 2013

SITRANS F

Answers for industry.

SIEMENS

SIEMENS

SITRANS F

Ultrasonic Flowmeters FUS1010 IP65 NEMA 4X & IP66 NEMA 7

Operating Instructions

Introduction	1
Safety notes	2
	3
Description	-
Installing/mounting	4
Connecting	5
Commissioning	6
Functions	7
Alarm, error, and system messages	8
Service and maintenance	9
Troubleshooting	10
Technical data	11
Appendix	Α
Appendix	В

Legal information

Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are graded according to the degree of danger.

indicates that death or severe personal injury will result if proper precautions are not taken.

indicates that death or severe personal injury **may** result if proper precautions are not taken.

ACAUTION

indicates that minor personal injury can result if proper precautions are not taken.

NOTICE

indicates that property damage can result if proper precautions are not taken.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property damage.

Qualified Personnel

The product/system described in this documentation may be operated only by **personnel qualified** for the specific task in accordance with the relevant documentation, in particular its warning notices and safety instructions. Qualified personnel are those who, based on their training and experience, are capable of identifying risks and avoiding potential hazards when working with these products/systems.

Proper use of Siemens products

Note the following:

WARNING

Siemens products may only be used for the applications described in the catalog and in the relevant technical documentation. If products and components from other manufacturers are used, these must be recommended or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and maintenance are required to ensure that the products operate safely and without any problems. The permissible ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks

All names identified by [®] are registered trademarks of Siemens AG. The remaining trademarks in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability

We have reviewed the contents of this publication to ensure consistency with the hardware and software described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the information in this publication is reviewed regularly and any necessary corrections are included in subsequent editions.

Table of contents

1	Introd	uction	9
	1.1	Preface	9
	1.2	Items supplied	9
	1.3	History	10
	1.4	Further Information	10
2	Safety	y notes	11
	2.1	General safety instructions	11
	2.2	Warning Symbols	12
	2.3	Laws and directives	12
	2.4	Lithium batteries	13
	2.5	Installation in hazardous area	14
	2.6	Safety Notes	16
	2.7	Certificates	20
3	Descr	iption	21
	3.1	FUS1010 features	21
	3.2	NEMA 4X and NEMA 7 Transmitters	21
	3.3	Applications	23
	3.4	Theory of Operation	24
4	Install	ling/mounting	
	4.1	Installation safety precautions	
	4.2	Determining a location	
	4.3	Use according to specifications	34
	4.4	Application Guidelines	34
	4.5	Mounting the Transmitter	35
5	Conne	ecting	
	5.1	Safety notes for connecting	
	5.2 5.2.1 5.2.2	Transmitter Wiring Connecting Power Wiring Temperature Sensor to Transmitter	
	5.3	Navigating the Menu	46
	5.4	Programming the Transmitter	49
	5.5	Sensor Installation	53

	5.5.1 5.5.2 5.5.3 5.5.4 5.5.5	Preliminary Installation Procedures Sensor Identification and Selection Reflect Mount Direct Mount 1012T Mounting Tracks	
	5.6	Mounting Temperature Sensors	
	5.7	Sensor Wiring	
6	Commi	issioning	
	6.1	General requirements	
	6.2	Commissioning	
	6.3	Empty Pipe Set	
	6.4	Installation Menus	
7	Functio	ons	
	7.1	UniMass Table	
	7.2	Selecting Flow Units	104
	7.3	Zero Flow Adjust Menu	109
	7.4	Span Data	113
	7.5	Analog Out Setup	115
	7.6	Analog Input Setup	118
	7.7	Expanded I/O Option	120
	7.8	Logger Control	124
	7.9	Operation Adjust Menu Settings	127
	7.10	Setting Relays	130
	7.11	Memory Control	132
	7.12	Analog Output Trim	133
	7.13	Resistive Temperature Device (RTD) Calibration	137
	7.14	Reflexor	140
8	Alarm,	error, and system messages	153
	8.1	Alarm Codes	153
9	Service	e and maintenance	155
	9.1	Maintenance	155
	9.2	Technical support	155
	9.3	Return procedures	156
	9.4	Battery disposal	157
	9.5	Disposal	

10	Trouble	shooting	159
	10.1	Troubleshooting	159
	10.2	F4 Reset Procedure	161
	10.3	Test Facilities Graph Screen	162
	10.4	Site Setup Data	172
	10.5	Force Transmit	177
11	Technic	al data	179
	11.1	Technical Data	179
Α	Append	lix	181
	A.1	Ordering	181
	A.2	I/O Connections and Wiring	181
	A.3	RS-232 Connection	202
	A.4	Flowrate Calibration and Calibration Tables	213
	A.5	Setup Procedure for Wet-Flow Calibration	216
в	Append	lix	221
	B.1	Installation/Outline Drawings	221
	Glossar	у	223
	Index		229

Tables

Table 5- 1	Keypad Function Chart	47
Table 5- 2	Pipe Configuration Option List Definitions	52
Table 5- 3	Temperature Sensors	78
Table 7- 1	Totalizer Modes	105
Table 7- 2	Totalizer Controls (the "n" in <fn> = channel number)*</fn>	
Table 7- 3	Analog Outputs	115
Table 7- 4	Analog Out Setup Data Categories	115
Table 7- 5	I/O Data Control Menu	118
Table 7- 6	Typical 2-Channel Flow Meter Expanded I/O Option Connections	122
Table 7- 7	Logger Control Menu Option List	124
Table 7- 8	Relay Option List	130
Table 7- 9	Memory Control Menu	132
Table 7- 10	Analog Out Trim Menu Structure	133
Table 7- 11	RTD Calibrate Menu Structure	137
Table 7- 12	Inline Metal and Plastic Pipe Cable Connections	142

Table 7- 13	Cursor Definitions	147
Table 7- 14	Diagnostic Data	149
Table 8- 1	Alarm Codes and Descriptions	153
Table 10- 1	Troubleshooting Tips	159
Table 10- 2	Description of Graph Screen Text Display Parameters	170
Table 10- 3	Hot Key Summary	171
Table 10- 4	Site Setup Menu Items	172
Table A- 1	Connection Diagrams and Part Numbers	181
Table A- 2	Input/Output Wiring (TB2) - 7ME39400AL00 and 7ME39400AL01 I/O Module (for	
	7ME3500 or 7ME3530 only)	182
Table A- 3	Input/Output Wiring (TB3) - 7ME39400AL00 and 7ME39400AL01 I/O Module	184
Table A- 4	Connection Diagrams and Part Numbers	186
Table A- 5	Input/Output Wiring (TB2) - 7ME39400AL03 and 7ME39400AL04 Expanded I/O Module	187
Table A- 6	Input/Output Wiring (TB3) - 7ME39400AL03 and 7ME39400AL04 Expanded I/O Module	188
Table A- 7	Input/Output Wiring (TB4) - 7ME39400AL03 and 7ME39400AL04 Expanded I/O Module	189
Table A- 8	Connection Diagrams and Part Numbers	190
Table A- 9	Input/Output Wiring (TB2) - 7ME39400AL04 Expanded I/O Module	192
Table A- 10	Open Collector User Resistor Recommendations	193
Table A- 11	Input/Output Wiring (TB3) - 7ME39400AL04 Expanded I/O Module	194
Table A- 12	Input/Output Wiring (TB4) - 7ME39400AL04 Expanded I/O Module	195
Table A- 13	Input/Output Wiring (TB3) - 7ME39406ML00 I/O Module (4-Channel)	196
Table A- 14	Connection Diagrams and Part Numbers	197
Table A- 15	Input/Output Wiring TB1 7ME39404SB00 - Analog Input Module (2 Chan/Dual Path)	198
Table A- 16	Input/Output Wiring TB2 7ME39404SB00 - Analog Input Module (2 Chan/Dual Path)	198
Table A- 17	Input/Output Wiring TB3 7ME39404SB00 - Analog Input Module (2 Chan/Dual Path)	198
Table A- 18	Input/Output Wiring TB4 7ME39404SB00 - Analog Input Module (2 Chan/Dual Path)	198
Table A- 19	Input/Output Wiring TB5 7ME39404SB00 - Analog Input Module (2 Chan/Dual Path)	199
Table A- 20	Connection Diagrams and Part Numbers	200
Table A- 21	Input/Output Wiring TB1 7ME39400SA00 - Analog Input Module	200
Table A- 22	Input/Output Wiring TB2 7ME39400SA00 - Analog Input Module	201
Table A- 23	Input/Output Wiring TB3 and TB4 7ME39400SA00 - Analog Input Module	201

Figures

Figure 3-1	Typical Transmitter Label	22
Figure 3-2	NEMA 4X Transmitter Case	22
Figure 3-3	NEMA 7 Case Enclosure with graphic display and keypad	23
Figure 4-1	Pipe Mounting and Mounting Locations for Transmitter	36
Figure 5-1	Input Power Plug (J10) Wiring	40
Figure 5-2	Analog Input Module Access	43
Figure 5-3	Single Channel Temperature Sensor Inputs	44
Figure 5-4	KeyPad	47
Figure 5-5	Typical Installation Menu Screen	48
Figure 5-6	Reflect Mount (Pipe shown from above in 12 o'clock position)	54
Figure 5-7	Direct Mount (Pipe shown from above in 12 o'clock position)	55
Figure 5-8	Sensor Alignment (Horizontal Plane)	56
Figure 5-9	Pipe Surface Preparation	57
Figure 5-10	Universal Sensor Label	58
Figure 5-11	Hi Precision Sensor Label	59
Figure 5-12	Reflect Mount with Mounting Frames and Spacer Bar	61
Figure 5-13	Sensor	63
Figure 5-14	Sensor Installation	63
Figure 5-15	Mylar Spacing Guide	64
Figure 5-16	Wrap Strap Under Pipe and Attach to Adjusting Screw	65
Figure 5-17	Wrapping the Mylar Spacing Guide around the pipe (End View)	67
Figure 5-18	Finding the Halfway Distance	67
Figure 5-19	Aligning the Sensors for Direct Mode operation (End View)	68
Figure 5-20	Reflect Mount with Model 1012TN Mounting Track (Side View)	70
Figure 5-21	Direct Mount 180° opposed with Mounting Tracks	73
Figure 5-22	Wrapping the Mylar Spacing Guide around the pipe (End View)	75
Figure 5-23	Finding the Halfway Distance	75
Figure 5-24	Track Rail Alignment	76
Figure 5-25	REF and Number Index Pin Locations	77
Figure 5-26	Clamp-on Temperature Sensor	79
Figure 5-27	Insert Temperature Sensor	80
Figure 5-28	Sensor Cable Connections	81
Figure 6-1	Final Setup	84
Figure 6-2	Measuring Flow	84
Figure 7-1	Sample File	101

Figure 7-2	Sensor Mounting Examples	141
Figure 7-3	Adjacent Sensor Mounting	142
Figure 7-4	In-Line Sensor Mounting	143
Figure 7-5	Spectra Graph Display Screen	146
Figure 10-1	Test Facilities Graph Screen	163
Figure 10-2	Setting Digital Damping Factor	166
Figure 10-3	Setting the MinDamp Factor	167
Figure 10-4	Envelope Threshold Adjustment	169
Figure A-1	7ME39400AL00 and 7ME39400AL01 I/O Module	182
Figure A-2	7ME39400AL03 and 7ME39400AL04 Expanded I/O Module	186
Figure A-3	7ME39400AL04 Expanded I/O Module	191
Figure A-4	7ME39404SB00 Analog Input Module	197
Figure A-5	Temperature Sensor Inputs	199
Figure A-6	7ME39400SA00 - Analog Input Module	200
Figure A-7	1015CPC-N Serial Interface Cable	203

Introduction

1.1 Preface

These instructions contain all the information you need for using the device.

The instructions are aimed at persons mechanically installing the device, connecting it electronically, configuring the parameters and commissioning it as well as service and maintenance engineers.

Note

It is the responsibility of the customer that the instructions and directions provided in the manual are read, understood and followed by the relevant personnel before installing the device.

1.2 Items supplied

- SITRANS F Transmitter
- SITRANS F literature CD
- For additional items refer to your packing slip.

Inspection

- 1. Check for mechanical damage due to possible improper handling during shipment. All claims for damage are to be made promptly to the shipper.
- 2. Make sure the scope of delivery, and the information on the type plate corresponds to the ordering information.

1.3 History

The contents of these instructions are regularly reviewed and corrections are included in subsequent editions. We welcome all suggestions for improvement.

The following table shows the most important changes in the documentation compared to each previous edition.

Edition	Remarks
07/2010	First edition of Operating Instructions for SITRANS FUS1010 IP65 NEMA 4X & IP66 NEMA 7 flow meter.
02/2011	Second edition of Operating Instructions for SITRANS FUS1010 IP65 NEMA 4X & IP66 NEMA 7 flow meter. This document replaces all previous instructions for use.
01/2013	Third edition of Operating Instructions for SITRANS FUS1010 IP65 NEMA 4X & IP66 NEMA 7 flow meter. This document replaces all previous instructions for use.
	The most important changes are as follows:
	To use Si-Ware download the program at [http://s13.me/ns/cv]
	 Expanded I/O Module Installation Wiring Diagram 1010N-7-7 has been updated to Revision 08.
	• I/O Module Installation Wiring Diagram 1010N-2-7 has been updated to Revision 05.
	 Analog Input Module Installation Drawing 1010N-5DS2-7 has been updated to Revision 06. Appendix I/O Connection and Wiring chapter has been updated.
	• I/O Module Installation Drawing 1010N-8MS2-7 has been updated to Revision 03.

1.4 Further Information

Product information on the Internet

The Operating Instructions are available on the CD-ROM shipped with the device and on the Internet on the Siemens homepage, where further information on the range of SITRANS F flow meters may also be found: Product information on SITRANS F in the Internet (http://www.siemens.com/sitransf)

Worldwide contact person

If you need more information or have particular problems not covered sufficiently by the operating instructions, please get in touch with your contact person. You can find contact information for your local contact person on the Internet: www.siemens.com Local contact person (http://www.automation.siemens.com/partner)

Safety notes

2.1 General safety instructions

Correct, reliable operation of the product requires proper transport, storage, positioning and assembly as well as careful operation and maintenance. Only qualified personnel should install or operate this instrument.

Note

Alterations to the product, including opening or improper modifications of the product, are not permitted.

If this requirement is not observed, the CE mark and the manufacturer's warranty will expire.

2.2 Warning Symbols

2.2 Warning Symbols

Symbol	Explanation
\wedge	Consult operating instructions
	Hot surface
	Dangerous electrical voltage
	Corrosive materials
	Toxic materials
Ø	Isolate the device from power using a circuit-breaker
Θ	Protect the device from impact otherwise loss of degree of protection
	Protective insulation; device in protection class II

2.3 Laws and directives

General requirements

Installation of the equipment must comply with national regulations. For example, the National Electrical Codes.

Instrument safety standards

The device has been tested at the factory, based on the safety requirements. In order to maintain this condition over the expected life of the device the requirements described in these Operating Instructions must be observed.

NOTICE

Material compatibility

Siemens can provide assistance with the selection of sensor parts. However, the full responsibility for the selection rests with the customer and Siemens can take no responsibility for any failure due to material incompatibility.

CE marked equipment

The CE-mark symbolizes the compliance of the device with the following Directives:

- EMC-Directive 2004/108/EC
- Low voltage Directive 2006/95/EC
- ATEX Directive 94/9/EC

2.4 Lithium batteries

Lithium batteries are primary power sources with high energy content designed to represent the highest possible degree of safety.

Potential hazard

Lithium batteries may present a potential hazard if they are abused electrically or mechanically.

- Observe the following precautions when handling and using lithium batteries:
 - Do not short-circuit, recharge or connect with false polarity.
 - Do not expose to temperature beyond the specified temperature range or incinerate the battery.
 - Do not crush, puncture or open cells or disassemble battery packs.
 - Do not weld or solder to the battery's body.
 - Do not expose contents to water.

2.5 Installation in hazardous area

2.5 Installation in hazardous area

WARNING

Explosion Hazard

Equipment used in hazardous areas must be Ex-approved and marked accordingly.

It is required that the special conditions for safe use provided in the manual and in the Ex certificate are followed!

Hazardous area approvals

The device is approved for use in hazardous area and has the following approval:

- FM and CSA certified
- Class I, Division 1, Groups ABCD
- Class II, Division 1, Groups EFG
- ATEX

WARNING

Explosion Hazard

Devices without the correct hazardous area approval create dangerous environments.

Make sure the hazardous area approval is suitable for the environment in which the device will be installed.

Intrinsically safe data

Explosion Hazard

User must install unit with Siemens drawings. With intrinsically safe circuits, use only certified meters appropriate for the transmitter.

If a non-conforming supply unit is used, the "fail-safe" type of protection will no longer be effective and the approval certification will be invalid.

2.5 Installation in hazardous area

Hazardous area safety requirements

It is required that:

- Electrical connections are in accordance with EN60079-14 (Installing Electrical Systems in Explosion Hazardous Areas).
- The protective cover over the power supply is properly installed. For intrinsically safe circuits the connection area can be opened.
- Appropriate cable connectors are used for the output circuits:
 - Intrinsically safe: blue
 - Non-intrinsically safe: black
- Sensor and transmitter are connected to the potential equalization.
 For intrinsically safe output circuits potential equalization must be maintained along the entire connection path.
- When protective earth (PE) is connected, no potential difference between the protective earth (PE) and the potential equalization (PA) can exist, even during a fault condition.

Explosion Hazard

"Flameproof enclosure" type of protection

Only open devices with type of protection "Flameproof enclosure" (e.g. FUT1010 NEMA 7) in hazardous areas when the power to the device is turned off, otherwise there is a risk of explosion.

Explosion Hazard

Laying Cables

Cable for use in zone 1 and 2 must satisfy the requirements for having a proof voltage < AC 500 V applied between the conductor/ground, conductor/shield and shield/ground.

Connect the devices that are operated in hazardous areas as per the stipulations applicable in the country of operation, e.g. for Ex "d" and "nA", permanent cables must be laid.

WARNING

Explosion Hazard

Devices with the common approval "Intrinsically safe" and "Flameproof"

The following is applicable for devices with the common approval "Intrinsically safe" and "Flameproof" (Ex ia + Ex d): Before commissioning, make sure that the type of protection that is not suitable is permanently defaced on the nameplate to avoid improper use.

If a non-conforming infeed is used, the "fail-safe" type of protection will no longer be effective.

2.6 Safety Notes

2.6 Safety Notes

Safety Information for Hazardous Areas

Explosion Hazard.

Death, serious injury or property damage will result if unauthorized and unqualified personnel tamper with equipment.

Restrict use and repair to qualified personnel.

DANGER

Explosion Hazard

Death or severe personal injury and/or equipment and property damage will result if proper Hazardous (Classified) Locations installation precautions are not taken.

Restrict use and repair to qualified personnel.

Explosion Hazard

The use of unauthorized parts in the repair of the equipment, tampering by unqualified personnel, or installation in a Hazardous (Classified) Location will result in dangerous conditions which will cause death, serious injury, and/or equipment and property damage.

Restrict use and repair to qualified personnel.

Follow all safety instructions contained or referenced herein.

Explosion Hazard

Death or severe personal injury and/or equipment and property damage will result due to improper installation or use of this equipment when located in a Hazardous (Classified) Location.

- Install as directed.
- Disconnect power source before servicing.
- Keep cover closed when equipment is operating.

2.6 Safety Notes

Qualified personnel

This flowmeter system may only be set up and used in conjunction with this document and the instructions on the electronic media provided. Installation, maintenance and operation of the flowmeter system may only be performed by qualified personnel. Within the context of this Document, qualified persons are defined as persons who have the skills and knowledge related to the construction and operation of the electrical equipment and installations and have received safety training to recognize and avoid the potentially explosive hazards involved.

Qualified personnel possess the following qualifications

- 1. Is trained and authorized to energize, de-energize, clear, ground and tag circuits and equipment in accordance with established safety practices.
- 2. Is trained in the proper care and use of protective equipment such as rubber gloves, hard hat, safety glasses or face shields, flash clothing, etc., in accordance with established safety practices.
- 3. Is trained in rendering first aid.

Note

This document does not purport to cover all details or variations in equipment, or to provide for every possible contingency to be met in connection with installation, operation or maintenance. Should further information be desired or should particular problems arise, which are not covered sufficiently for the purchaser's purposes, the matter should be referred to the local Siemens sales office (www.automation.siemens.com/partner). The contents of this Document shall not become part of or modify any prior or existing agreement, commitment or relationship. The sales contract contains the entire obligation of Siemens. The warranty contained in the contact between the parties is the sole warranty of Siemens. Any statements contained herein do not create new warranties or modify the existing warranty.

Safety Information for Hazardous Areas

Note

Ratings under this heading apply to specific model families.

Check Your Model Number: FUS1010, 7ME3530, 7ME3533.

FM-CSA installation

Read, understand and follow all safety instructions on the electronic media provided. This equipment is rated for use in hazardous (classified) locations as stated below and must be installed according to the 1010-304 installation drawing provided on the media. Failure to install the equipment in the prescribed manner will result in unsafe operation. Follow all local jurisdictional safety codes when operating this equipment. When properly installed the equipment meets the following FM – CSA ratings.

2.6 Safety Notes

Transmitter

- Intrinsically safe connections Class I and II, Division 1, Groups A, B, C, D, E, F and G;
- Nonincendive for Class I, Division 2, Groups A, B, C and D;
- Suitable for Class II, Division 2, Groups E, F and G outdoor (Type 4X), Class III (CSA only)
- Temperature code T5 at an ambient of 40°C

Sensors

- Intrinsically safe Class I and II, Division 1, Groups A, B, C, D, E, F and G;
- Nonincendive for Class I, Division 2, Groups A, B, C and D;
- Suitable for Class II, Division 2, Groups E, F and G outdoor (Type 4X), Class III (CSA only)
- Temperature code T6 at an ambient of 40°C

ATEX installation

Read, understand and follow all safety instruction on the electronic media provided. This equipment complies with Directive 94/9/EC and is rated for use in potentially explosive atmospheres. The equipment markings are shown and explained below. Equipment must be installed according to the 1010-389 installation drawing provided on the media. Failure to install the equipment in the prescribed manner will result in unsafe operation. Follow all regional safety laws when operating this equipment. When properly installed the equipment meets the following ATEX ratings as stated in EC-Type Examination Certificate KEMA03ATEX1134

Transmitter Markings and Explanations

- (Ex)II (1) G [Ex ia] IIC Transmitter located in the non-hazardous area with intrinsically safe circuits of category Ex ia, which can be connected to Category 1 Sensors
- (Ex)II 3 (1) G Ex nC [ia] IIC T5 Category 3 Transmitter located in Zone 2 potentially explosive atmosphere with intrinsically safe circuits of category Ex ia, which can be connected to Category 1 Sensors in Zone 0
- IP65 Ingress protection against solid bodies, rating of dust-tight and against liquid, rating of water jets

Sensor Markings and Explanations

 (Ex)II 1 G Ex ia IIC T5 – Category 1 Sensors located in Zone 0 potentially explosive atmosphere with intrinsically safe circuits of category Ex ia for use in potentially explosive atmosphere containing gases

Safety Information for Hazardous Areas

Note

Ratings under this heading apply to specific model families.

Check Your Model Number: FUS1010, 7ME3530, 7ME3533

FM-CSA installation

Read, understand and follow all safety instruction on the electronic media provided. This equipment is rated for use in hazardous (classified) locations as stated below and must be installed according to the 1010-443 installation drawing provided on the media. Failure to install the equipment in the prescribed manner will result in unsafe operation. Follow all local jurisdictional safety codes when operating this equipment. When properly installed the equipment meets the following FM – CSA ratings:

Transmitter

- Explosionproof for Class I, Division1, Groups B, C, D;
- Dust-ignitionproof for Class II, Division 1, Groups E, F and G
- Intrinsically safe connections for Class I and II, Division 1, Groups A, B, C, D, E, F and G;
- Nonincendive for Class I, Division 2, Groups A, B, C and D;
- Suitable for Class II, Division 2, Groups E, F and G outdoor (Type 4X), Class III (CSA only)

Sensors

- Intrinsically safe Class I and II, Division 1, Groups A, B, C, D, E, F and G;
- Nonincendive for Class I, Division 2, Groups A, B, C and D;
- Suitable for Class II, Division 2, Groups E, F and G outdoor (Type 4X), Class III (CSA only)
- Temperature code T6 at an ambient of 40°C

ATEX installation

Read, understand and follow all safety instruction on the electronic media provided. This equipment is rated for use in explosive atmospheres as stated below and must be installed according to the 1010-464 installation drawing provided on the media. Failure to install the equipment in the prescribed manner will result in unsafe operation. Follow all regional safety laws when operating this equipment. When properly installed the equipment meets the following ATEX ratings as stated in EC-Type Examination Certificate KEMA03ATEX1134

Transmitter Markings and Explanations

- <a>(1) G [Ex ia] IIC- Transmitter located in the non-hazardous area with intrinsically safe circuits of category Ex ia, which can be connected to Category 1 Sensors for use in potentially explosive atmosphere containing gases
- (Ex)II 3 (1) G Ex nC [ia] IIC T5 (Tamb = 0° To + 60°C) Category 3 Transmitter located in Zone 2 potentially explosive atmosphere with intrinsically safe circuits of category Ex ia, which can be connected to Category 1 Sensors in Zone 0 for use in potentially explosive atmosphere containing gases
- (Ex)II 2 (1) G Ex d [ia IIC] IIB T5 (Tamb = 0° To + 50°C) Category 2 Transmitter located in Zone 1 potentially explosive atmosphere with intrinsically safe circuits of category Ex ia, which can be connected to Category 1 Sensors for use in potentially explosive atmosphere containing gases

- (Ex)II 2 (1) G Ex d [ia IIC] IIB+H2 T5 (Tamb = 0° To + 50°C) Category 2 Transmitter located in Zone 1 potentially explosive atmosphere with intrinsically safe circuits of category Ex ia, which can be connected to Category 1 Sensors for use in potentially explosive atmosphere containing gases
- IP66 Ingress protection against solid bodies, rating of dust-tight and against liquid, rating of heavy seas

Sensor Markings and Explanations

 (Ex)II 1 G Ex ia IIC T5 – Category 1 Sensors located in Zone 0 potentially explosive atmosphere with intrinsically safe circuits of category Ex ia for use in potentially explosive atmosphere containing gases

2.7 Certificates

Certificates are posted on the Internet and on the documentation CD-ROM shipped with the device.

See also

Technical data (Page 179)

Certificates on the Internet (http://www.siemens.com/processinstrumentation/certificates)

Description

3.1 FUS1010 features

Description

The Siemens SITRANS FUS1010 IP65 NEMA 4X & NEMA 7 flow meters achieve highly accurate flow measurement owing to the WideBeam ultrasonic transit-time technology. The sensors are mounted on the outside of the pipe, preventing contact with the medium.

The sensor construction makes installation and commissioning of even the largest sizes very straight forward and easy. The sensors deliver true multi-parameter measurements i.e. volume flow, density and temperature.

Note

This operating Instructions manual applies to the following FUS1010 IP65 NEMA 4X & NEMA 7 operating systems: Version 3.02.00 and later and version 5.03.00 and later.

3.2 NEMA 4X and NEMA 7 Transmitters

SITRANS FUS1010 Transmitters

The SITRANS FUS1010 NEMA 4 and NEMA 7 series transmitters are available in Dual Path and Multi-Path versions. The transmitters include a graphic display providing flow rate, diagnostics data and keypad interface to access on-screen software setup menus. Safety agency approved SITRANS FUS1010 series transmitters have hazardous area certification as indicated in the label examples below.

3.2 NEMA 4X and NEMA 7 Transmitters

SITRANS-FUS1010 NEMA Transmitter Labels

The transmitter label is located on the right side panel of the unit. The illustration shows a typical label but labels vary depending upon model and installation location.

Figure 3-1 Typical Transmitter Label

SITRANS FUS1010 Model Numbers

The SITRANS FUS1010 NEMA 4X model numbers:

- Single Channel 7ME3530-1
- 2 Channel / 2 Path 7ME3530-2
- 4-Channel / 4-Path 7ME3530-9 (Wall Mount only)

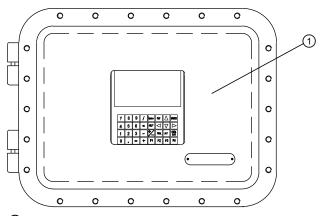
Figure 3-2 NEMA 4X Transmitter Case

Note

The NEMA 4X Multi-Path transmitter case is slightly larger.

3.3 Applications

The SITRANS FUS1010 NEMA 7 model numbers:


- 2 Channel / 2 Path 7ME3533-2 (Wall Mount with display window)
- 4 Channel / 4-Path 7ME3533-9 (Wall Mount with display window)

WARNING

Electrical Shock Hazard

Access to the Graphic display and keypad setup must be done with cover opened exposing high voltage connections which may cause death or serious injury.

Consult local codes for permit needed to setup FUS1010 NEMA 7 units using the graphic display and local keypad to avoid injury.

① Standard Case Enclosure

Figure 3-3 NEMA 7 Case Enclosure with graphic display and keypad.

3.3 Applications

Measurement of Liquids

SITRANS F flow meters are designed for measurement of a variety of liquids and gases. The transmitters are multi-parameter devices offering accurate measurement of mass flow, volume flow, density, and temperature.

Typical Applications

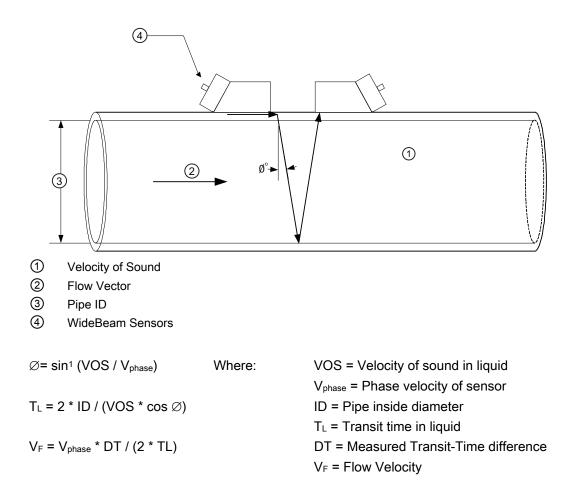
The typical applications of the flowmeter are:

- Fuel Flow Measurement
- Hydraulic Oil Leak Detection
- Measurement of Additives
- Oil & Gas: Filling of gas bottles, furnace control, CNG-dispensers, test separators
- Crude Oil

FUS1010 IP65 NEMA 4X & IP66 NEMA 7 Operating Instructions, 01/2013, A5E02951520-AC

- Finished Hydrocarbon Products
- Fuel Oil
- Bunker Fuel

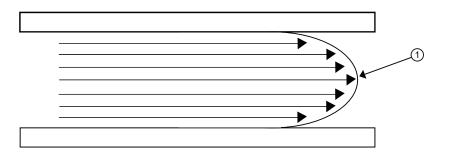
Typical Industries Serviced


- HVAC (Hotels, Airports, Government)
- Power Generation (Nuclear, Fossil, and Hydro)
- Chemical Processing
- Food and Pharmaceutical
- Aircraft Avionics and Ground Support
- Water and Wastewater
- Aerospace
- Automobile Manufacturing
- Hydrocarbon Industries

3.4 Theory of Operation

The liquid flow meter relies on the MultiPulse transit-time. Two WideBeam ultrasonic sensors per measuring path, alternating as transmitter and receiver, are used to interrogate the liquid flowing within the metering section. The resulting time of arrival for each direction of transmit (upstream and downstream) is then measured using a highly accurate and stable digital signal processing method.

Using this detection scheme, the flow meter is capable of resolving the relative transit-time difference (dT) to within ± 100 psec. Considering typical liquid flow transit-time differences ranging from 1×10^4 to 1×10^6 psec, the flow meter is capable of providing an exceptional turndown ratio. The flow meter also incorporates a correlation technique which enables the system to detect very high flow velocities with the same high degree of resolution. The ultrasonic sensors are designed with sufficient beam divergence characteristics to insure that the receive sensor will always have sufficient signal to maintain operation under conditions of high beam blowing, a condition that occurs under very high flow velocities where the path of the ultrasonic beam is actually blown past the receivable area of the sensor.


With accurate signal arrival time available, the flow meter can compute the raw flow velocity from the measured upstream and downstream transit times.

Flow Profile Compensation

The flow equation shown above is only valid for "plug" flow, where the flow velocity is uniform across the entire cross-section of the pipe. Frictional forces between the fluid and the pipe wall cause the flow velocity to be nearly zero at the pipe wall and peaked toward the center of the pipe (as shown in the diagram below).

The acoustic beam traverses the center of the pipe and therefore must account for the influence that flow profile has on the line integration through a round pipe. The shape of this flow profile (for fully developed flow) is defined by the Reynolds number.

① Fluid velocity near the axis of the flow stream tends to be greater.

The Reynolds number is then computed as follows:

 $Rn = \frac{645 * Pipe ID * V_F}{Viscosity}$ where:
viscosity = cS = cP/density
Pipe ID = inches
V_F = inches/sec
cS = kinematic viscosity
cP = absolute viscosity

The flow meter then uses this computation of Reynolds number to compensate the raw flow velocity for conditions of laminar or turbulent flow profile as defined by an internal Reynolds compensation table. The flow meter then converts the compensated flow velocity to volumetric flow rate.

Rate = V_F * Comp(Rn) * Pipe area

Volume Correction Algorithm

The flow meter provides Standard Volume output by inferentially determining the liquid API @ 15.6°C (60°F), or the specified base temperature, and then applying the API standard (2540) algorithm as outlined below. Before describing API algorithm the steps required to obtain bulk or actual flow should be reviewed.

Based on the measured transit time difference (Δt), average transit time (T_N) and pipe dimensions, the RAW flow rate (FLOW_{RAW}) and liquid sonic velocity (VoS) are computed.

Using the liquid temperature input (Standard on FUS1010) and the optional user provided pressure input, the measured VoS is then compensated to the value expected for base temperature and pressure conditions (i.e. 15.6°C and 1 BARA or 60°F and 14.7 PSIA). This compensated VoS is called Liquident.

LiquIdent = VoS + TempSlope * (t - base temp) + PresSlope * (p - base pressure)

where: t = measured temperature (°C or °F)

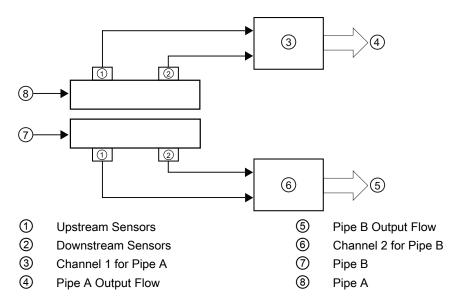
TempSlope = change in liquid sonic velocity per °C or °F (Linear for petroleum products.)

PresSlope = change in liquid sonic velocity per PSI (Linear for petroleum products.)

Liquident provides an output that identifies the liquid independent of the operating temperature and pressure.

- Through optimization the LiquIdent values (for a wide range of different liquids) can then be associated with an API@ 15.6°C (60°F) as well as Viscosity @ 15.6°C (60°F). This information can be keyed into a lookup table within the flow meter. This table then serves as a reference for dynamically inferring the liquid properties as different liquid batches enter the flow sensor. (The lookup function for this table will also interpolate and extrapolate for values between and outside the table values.)
- Based on FLOW_{RAW} and the inferred Viscosity, the current Reynolds # is computed. The Reynolds # value is used to correct the raw flow for non-plug flow profile. The compensated actual flow rate is then computed (FLOW_{BULK}).
- The volume correction can now be computed using API standard 2540. Note: 15.6°C (60°F) is used for the base temperature value in the example below, but this can be altered within the flow meter menu.
- a) p₆₀ = (141.5 *999.012) / (131.5 + API60)
- where:p₆₀ = density at 15.6°C (60°F) (Kg/m³)
- b) α_{60} = K₀ / ρ_{60}^2 + K₁ / ρ_{60}
- where K₀ and K₁ are coefficients of thermal expansion.
- c) $\rho_t = \rho_{60} * EXP (- \alpha_{60} \Delta t (1 + 0.8 \alpha_{60} \Delta t))$
- where $\Delta t = (t 60)$ °F and t = measured temperature
- d) Therefore the volume correction factor (VCF) = ρ_t / ρ_{60}

The final volume compensated flow rate is then: Std Flow = FLOWBULK * VCF

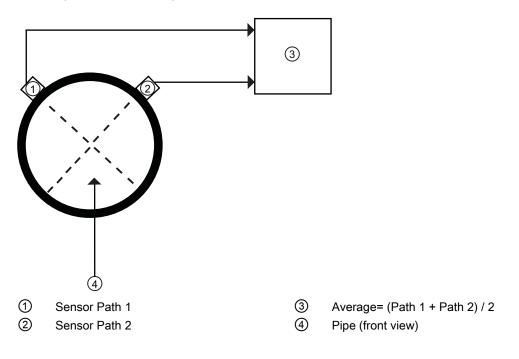

Flow Meter Types

The meter automatically conditions Installation Menu choices to suit the selected meter type. The following paragraphs introduce the available flow meter types that include:

- 2-Channel
- 4-Channel
- 2-Path
- 4-Path
- Channel 1+2
- Channel 1-2
- Reflexor (Page 140)

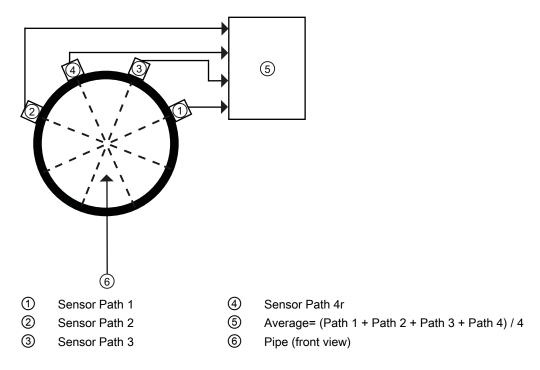
2-Channel

Dual Channel provides two independent measurement channels that operate simultaneously. Depending on the specific model, Dual Channel supports: Clamp-on Transit-time, In-line Transit-time and Reflexor.

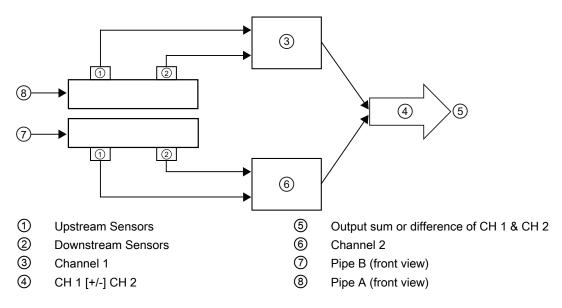


4-Channel

4 Channel provides four independent measurement channels that operate simultaneously. Depending on the specific model, 4 Channel supports: Clamp-on Transit-time, In-line Transit-time and Reflexor.


2-Path

2-Path flow meters use two measurement channels to achieve a single output via a "virtual" third channel. The resultant data is the average of the two channels. Only clamp-on or in-line transit-time operation is allowed. Benefits include highest available precision and enhanced immunity to distorted flow profile conditions.


4-Path

4-Path flow meters use four measurement channels to achieve a single output via a "virtual" third channel. The resultant data is the average of the four channels.

Channel 1+2 and Channel 1-2

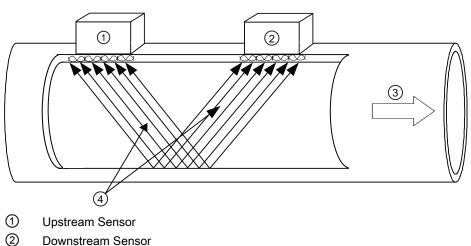
Arithmetic operation produces data output via a virtual Channel 3, proportional to the sum or difference of the liquid and energy flow of two independent pipes. This requires setting the two channels to operate independently. Only clamp-on or in-line transit-time operation is supported.

Channel 1+2 produces a data output via a virtual Channel 3, proportional to the sum of the liquid and energy flow of two independent pipes. You have to set-up two channels independently. Only clamp-on or in-line transit-time operation is supported.

Channel 1-2 produces a data output via a virtual Channel 3, proportional to the difference of the liquid and energy flow of two independent pipes. You have to set-up two channels independently. Only clamp-on or in-line transit-time operation is supported.

WideBeam Transmission

As shown in the figure above, an ultrasonic sensor induces an axial sonic beam within the wall of the pipe. These vibrations spread along the pipe wall and then enter the liquid in the form of a WideBeam wave front traveling at an angle to the main pipe axis. The wide beam "rains" over the receiving sensor. The wide coverage of the receiver is necessary because the angle of the sonic beam is related to the liquid's sonic propagation velocity by Snell's Law.


Beam Angle = Arc Sine (Liquid Sonic Propagation Velocity) Transducer Phase Velocity

According to this formula, it can be stated that as the liquid sonic propagation velocity changes so will the angle between the sonic beam and the flow stream.

Therefore, a significant liquid sonic velocity shift could deflect a "narrow" beam transmission away from the receiving sensor entirely. The upstream vs. downstream transit-time difference will also be affected by the changing (or refracting) beam angle. This makes it necessary for flow meter systems to continuously compute this angle, since it is subject to varying degrees of refraction. The flow meter derives the angle by knowing the fixed position of the sensors, the dimensions of the pipe and the measured transit-time.

Flow Calibration Factor

Normally, the flow stream is parallel to the axis of the pipe. On this basis, the calibration factor of a clamp-on ultrasonic flow meter is proportional to the cosine of the beam angle relative to the pipe axis. However, this reveals that if the angle of flow stream is not in line with the pipe axis, the flow calibration factor could be compromised. This most often occurs when the sensor mounting location is within close proximity of a bend or other pipe obstruction.

- Flow Direction
- ④ Wide Beam transmissions exchanged between the Upstream and Downstream sensors

Reflect mounting automatically corrects for non-axial flow or cross flow since the 2 vectors in a reflected beam are affected in opposite directions, such that the individual cross flow errors cancel each other.

Installing/mounting

4.1 Installation safety precautions

WARNING

High pressure hazard

In applications with working pressures/media that can be dangerous to people, surroundings, equipment or others in case of pipe fracture, we recommend that special precautions such as special placement, shielding or installation of a pressure guard or a safety valve are taken when the sensor is mounted.

4.2 Determining a location

WARNING

Electrical Shock Hazard

May cause death or serious personal injury.

Disconnect power before working on this product.

Upstream / Downstream

- Avoid long drop lines downstream from the sensor to prevent the meter pipe from draining.
- Avoid installing the sensor upstream of a free discharge in a drop line where possible.

Sensor Location in piping system

The optimum location in the system depends on the application

• For liquid applications the presence of excessive gas or air bubbles in the fluid may result in erroneous measurements. Therefore, it is preferred not to install the sensor at the highest point in the system, where gas / air bubbles will be trapped. For liquids it is advantageous to install the sensor in low pipeline sections, at the bottom of a U-section in the pipeline.

4.3 Use according to specifications

4.3 Use according to specifications

"Use according to specifications" covers:

- Use within technical limits.
- Consideration of liquid specifications and references.
- Consideration of specifications as to installation, commissioning and maintenance.

Do NOT:

- Use the sensors as a footboard for installation purposes.
- Change the flow meter in any way. For e.g. decomposition of material in connection with processing, welding and use of accessories and spare parts not approved by Siemens.

Note

If the flowmeter is not used according to the specifications, the manufacturer cannot be held responsible for any resulting damage.

4.4 Application Guidelines

Basic Requirements

- Determine pipe material and dimensions.
- Avoid vertical pipes flowing in a downward direction.
- Avoid installation of sensors on the top and bottom of horizontal pipes, if possible.
- Select a location with the longest straight run of pipe.
- Identify upstream piping configuration (elbow, reducer, etc.).
- Pipe surface should be smooth and, if necessary, free of paint.
- Avoid pressure reduction components upstream.
- Avoid mounting on or near weld seams.
- Pipe must be full to achieve proper operation.

4.5 Mounting the Transmitter

WARNING
Hazardous Voltage
May cause death or serious personal injury.
Disconnect power before working on this product.

Wall Mounting

The transmitter can be mounted on any wall surface including wood, metal or concrete. Use the appropriate bolts and screws as needed for your mounting application and adhere to local codes. (See figure below for mounting bracket locations.)

Pipe Mounting

For installation on 2-inch (6 cm) mounting pipe use Pipe Mount Kit CQO:1012NMB-1 (optional - see catalog). See figure below.

Note

Pipe mounting kit CQO:1012NMB-1 is not available for IP66 NEMA 7 enclosures.

4.5 Mounting the Transmitter

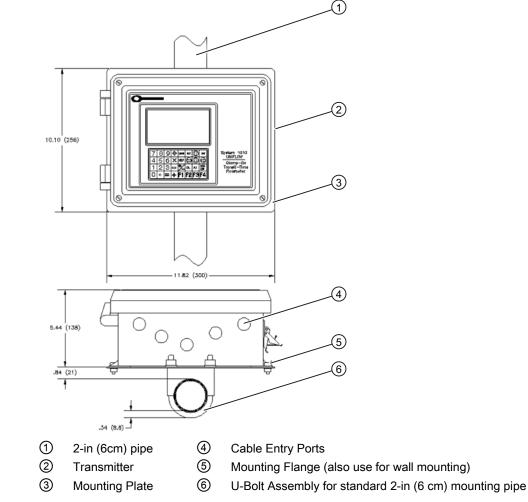


Figure 4-1 Pipe Mounting and Mounting Locations for Transmitter

Note

Use conduit fittings or cable glands on all cables.

NOTICE

Weather Seal Malfunctions

Incorrect installation of weather seals may result in failure to meet to IP65 standards and damage to the equipment.

Install weather tight seals at all unused holes using proper cable conduit and close additional holes to IP65 standards.

Connecting

5.1 Safety notes for connecting

Use in hazardous locations

DANGER Explosion Hazard

Death or severe personal injury and/or equipment and property damage will result if proper Hazardous (Classified) Locations installation precautions are not taken.

Restrict use and repair to qualified personnel. Only qualified personnel may carry out work on the electrical connections.

Before opening the terminal box check that:

- No explosion hazard exists
- Local safety codes and policy requirements have been followed
- All connection leads are potential free

5.1 Safety notes for connecting

DANGER

Explosion Hazard

"Flameproof enclosure" type of protection

Only open devices with type of protection "Flameproof enclosure" (e.g. FUT1010 NEMA 7) in hazardous areas when the power to the device is turned off, otherwise there is a risk of explosion.

Explosion Hazard

Hazardous areas

Observe the type examination certificates or the test certifications applicable in your country if you use transmitters as category 1/2 equipment, otherwise there is a risk of explosion.

Explosion Hazard

Intrinsically safe circuits

If a non-conforming supply unit is used, the "fail-safe" type of protection will no longer be effective and the approval certification will be invalid, otherwise there is a risk of explosion.

With intrinsically safe circuits, use only certified meters appropriate for the transmitter.

DANGER

Explosion Hazard

Laying Cables

Cable for use in zone 1 and 2 must satisfy the requirements for having a proof voltage < AC 500 V applied between the conductor/ground, conductor/shield and shield/ground, otherwise there is a risk of explosion.

Connect the devices that are operated in hazardous areas as per the stipulations applicable in the country of operation, e.g. for Ex "d" and "nA", permanent cables must be laid.

Explosion Hazard

Devices with the common approval "Intrinsically safe" and "Flameproof"

The following is applicable for devices with the common approval "Intrinsically safe" and "Flameproof" (Ex ia + Ex d): Before commissioning, make sure that the type of protection that is not suitable is permanently defaced on the nameplate to avoid improper use, otherwise there is a risk of explosion.

If a non-conforming infeed is used, the "fail-safe" type of protection will no longer be effective.

WARNING

Electrical Voltage Hazard

Incorrect device connections may result in death or severe personal injury and/or equipment and property damage.

Only commission the device after the device has been properly connected and, if required, closed.

5.2 Transmitter Wiring

5.2.1 Connecting Power

Connecting Power

DANGER

Electrical Shock Hazard

Contact with exposed wiring will lead to fire, electric shock, or serious personal injury.

Turn off main power before installing AC connections to the transmitter.

Note

If the transmitter is not already mounted and cabling has not been run, proceed to Mounting the Transmitter (Page 35) before connecting power.

- 1. Open the transmitter top cover by releasing the cover latch (for IP66 NEMA 7, remove bolts).
- 2. Unscrew the two power supply access cover fasteners and remove access cover.
- 3. Locate power supply connector J10. Using a flat blade screwdriver, remove plug from connector J10. Set aside.

Connecting

5.2 Transmitter Wiring

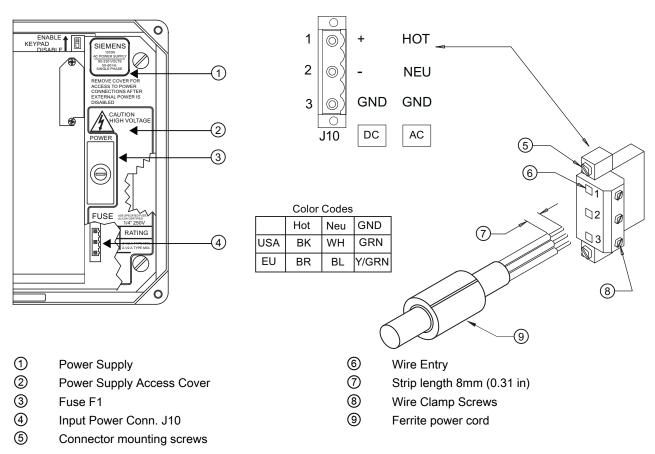
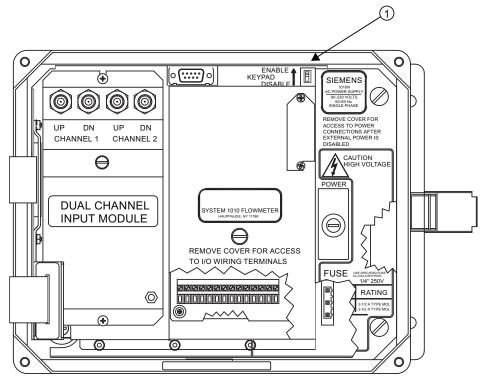


Figure 5-1 Input Power Plug (J10) Wiring

- 4. Pull the desired length of input power wires through a cable gland and into transmitter case before wiring connector.
- 5. Wire input power connector for AC or DC power depending on power supply provided.

Note


Dress cables and make sure cable length is not excessive as to impede proper replacement of access cover.

6. Insert wires into wire entry holes and secure by tightening wire clamp screws (see figure above).

Note

Power Supply connector wires should be stripped AWG 12 - 18 stranded wire or solid conductors.

7. Plug input power plug into connector J10 and secure using two captive connector mounting screws.

8. Replace access cover. Make sure Keypad Enable switch is in the "Enable" position (see below).

- (1) Keypad Enable Switch
- 9. If installing a Temperature Sensor board, go to Wiring Temperature Sensor to Transmitter (Page 43). If not, go to step 10.

Power Supply Damage

Improper power connections will damage power supply and may result in serious injury.

Ensure that all AC or DC power supply connections are properly connected to the appropriate power source (100-250 VAC @ 50/60 Hz or 9-36 VDC).

Electrical Shock Hazard

Certain parts inside the device carry dangerous high voltage and may result in electric shock, or serious personal injury.

The transmitter must be grounded and the top cover closed before applying power to the device.

- 10.Connect the power cables to the appropriate power source (90-240 VAC @ 50/60 Hz or 9-36 VDC). Close top cover.
- 11.Apply power.

5.2 Transmitter Wiring

12. Within 10 seconds of power-up the transmitter main display will become active and a typical Siemens graphic will appear. The screen also identifies the software version of the unit as shown below.

- ① Software Version (xx.xx.xx)
- 13.Press the <MENU> key and the Main Menu will appear. (Language selection is not on Version 3 op systems.)

Siemens	2 Channel [1]	Channel 1
Select Meter Ty	pe	
Meter Type Meter Facilites Language	>2 Channel Fl 2 Path Flow Ch 1 + 2 Flow Ch 1 - 2 Flow Reflexor	N

5.2.2 Wiring Temperature Sensor to Transmitter

Wiring Temperature Sensor to the Analog Input Module

Hazard Voltage

Contact with exposed wiring will lead to fire, electric shock, or serious personal injury.

Set transmitter and instrumentation power to OFF when inserting or removing the Analog Input Module, or when making connections to TB1, TB2, TB3 and TB4.

- 1. Disconnect power from the unit to the transmitter.
- 2. Open the transmitter top cover by releasing the cover latch.
- 3. Loosen the captive thumbscrew securing the Access Cover and remove Access Cover.
- 4. Using a flat-blade screwdriver, remove four captive screws securing the I/O board. Remove board and set it aside.

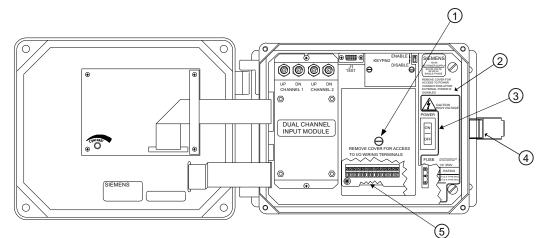


Figure 5-2 Analog Input Module Access

1	Access Cover Screw	4	Latch
2	Flow Meter	5	Access to Analog Input Module
3	Power Switch		

5.2 Transmitter Wiring

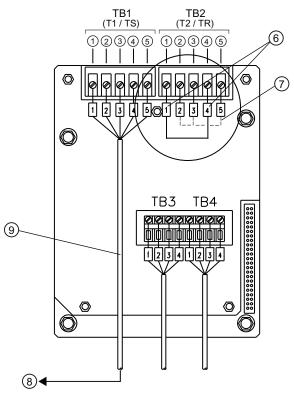


Figure 5-3 Single Channel Temperature Sensor Inputs

1	Black	6	Short Terminals 1 and 4 (For FUE1010 - TB2 is used for another Temperature sensor.)
2	Orange	7	Ground Terminals 2 and 3 to Terminal 5
3	Brown	8	To Sensor
4	Red	9	7ME39600CR (992EC) Series Cable
5	Blue		

Note

Alternate color codes for certain 1012EC cables:

White = Orange

Green = Brown

Wiring Temperature Sensor Board

- 1. Using a flat-blade screwdriver, loosen Terminal Block TB1 and TB2 screws.
- 2. Wire the RTD liquid 992EC temperature cable as shown in the table below:

992EC Series Cable	Terminal TB1
Wire #1 (Black)	To TB11
Wire #2 (Orange)	To TB12
Wire #3 (Brown)	To TB13
Wire #4 (Red)	To TB14
Wire #5 GND/SHLD (Blue)	*To TB15

Note

*For cathodically protected pipes, do not attach blue #5 wire at RTD end of cable.

- 3. For single channel use, wire TB2 as shown in figure above.
- 4. For dual channel use, connect Channel 2 temperature sensor to TB2.
- 5. Replace I/O Board and secure with four captive screws paying careful attention to pin alignment.
- 6. Replace Access Cover and finger tighten captive thumbscrew.

Note

TB3 and TB4 are also active analog inputs. See wiring table below.

Pin	TB3 Function	TB4 Function	Use	Description	Behavior	Load	Wiring
1	AUX. 1 IN	AUX. 3 IN	lin1 Input	Analog	4 to 20mA	200Ω	305 meters
2	AUX. 1 COM	AUX. 3 COM	lin1 Common	current input referenced to meter			(1000 ft.) Max w/o
3	AUX. 2 IN	AUX. 4 IN	lin2 Input		2 Input to meter		factory approval
4	AUX. 2 COM	AUX. 4 COM	lin2 Common	ground.			

5.3 Navigating the Menu

Note

If analog input is used for temperature, this will take priority over clamp-on RTD measurement.

Electrical Shock Hazard

Certain parts inside the device carry dangerous high voltage and may result in electric shock, or serious personal injury.

The transmitter must be grounded and the top cover closed before applying power to the device.

NOTICE

Power Supply Damage

Improper power connections will damage power supply.

Ensure that all AC or DC power supply connections are properly connected to the appropriate power source (100-250 VAC @ 50/60 Hz or 9-36 VDC).

7. Connect power cables to the appropriate power source (90-240 VAC @ 50-60 Hz or 9-36 VDC). Close transmitter top cover.

5.3 Navigating the Menu

Installation Menu Navigation

The Installation Menu Chart is a multi-level structure divided into three columns from left to right			
Level A - lists the major menu cat	egories.		
Level B - list the menu cells associated with Level A. You can enter data into Level B menu cells that are display parameters in a column at the right of the screen.			
Level C - lists the Level B data			
Level A	Level B	Level C	
	Recall Site Setup	Pump 1	
		Pump 2	
Channel Enable			
Create/Name Site			
Site Security			
	Delete Site Setup		
	Save/Rename Site		

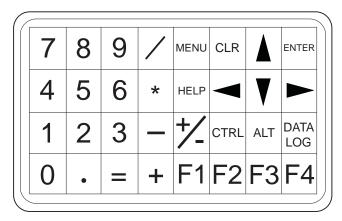
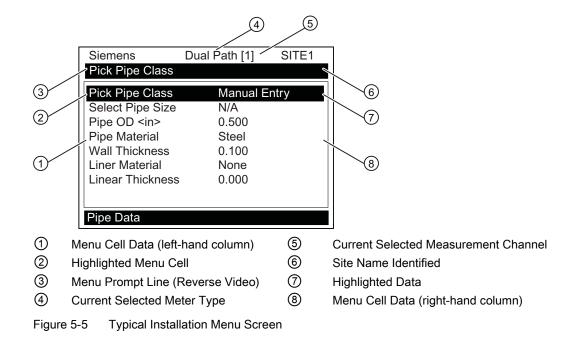


Figure 5-4 Key Pad


Note

Use <Left Arrow> key to return to previous menus.

Table 5-1 Keypad Function Chart

Keys	Description
MENU	Press to activate the Installation Menu.
ENTER	Store numeric data, select from option lists, etc.
Left / Right Arrows	Menu navigation keys move cursor.
Up / Down Arrows	Same as <left> and <right> arrows. Scrolls option lists and graphic display screen.</right></left>
CLR	Erases data or selects list options.
Numbers 0 - 9	Use to type numeric data.
Decimal Point	Use for decimal points in numeric data.
Math Operators	4-function math operations in numeric entry cells.
"F" Keys 1, 2, and 3	Used to start/stop/reset Totalizer.
F4	Caution: used during power up for system reset.
CTRL and ALT	Used as shift keys for alternative key functions.
DATALOG	Triggers immediate Datalogger report.
Plus and Minus [+ / -]	Changes the sign of numeric data.

5.3 Navigating the Menu

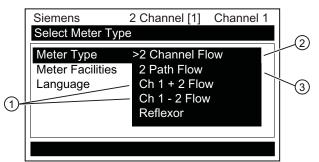
Select Language and Units

Note

Before creating a site select a Language and then English or Metric units from the [Meter Facilities] menu.

Note

To select English or metric units: In [Meter Type] menu, scroll to [Meter Facilities] menu. Press <Right Arrow> and select [Preferred Units]. Press <ENTER> to select. Press <Left Arrow> and <Up Arrow> to return to main menu.


Select a Meter Type

- 1. Press the <MENU> key and select the Meter Type.
- 2. Press the <Right Arrow> and scroll to [2 Channel Flow]

Note

Select [2 Channel Flow] if measuring two different pipes and [Dual Path Flow] if sensors are mounted on the same pipe.

Press <ENTER> to select. Press <Right Arrow> to select a different meter function, if desired then press <ENTER>.

- ① Select for summing or subtracting flow from two different pipes.
- ② Select for measuring two different pipes. (Not available for all models.)
- ③ Select if two sensors are mounted on the same pipe.

Create a Site

1. At the [Channel Setup] menu press the <Right Arrow>.

Note

Before proceeding make sure that English or Metric units have been selected.

- 2. Press the <Down Arrow> to select the [Create/Name Site] and enter a Site name.
- 3. Press <Right Arrow> to create Site name (e.g., ABC).

				-
	Siemens	2 Channel [1]	Channel 1]
	Right Arrow & Er	nter Creates a n	ew Site	
	Recall Site Setur Channel Enable	No sites No	3	
	Create/Name Sit	te ?		ľ
	Site Security	Off		
	Delete Site Setur	o No sites	5	
	Save/name Site			
	Channel Setup			
(Insert desire 	d name (8 chara	acters max.)	-

Note

To select letters: Press <Right Arrow> to cursor and then press <Up/Down Arrows> to select letters. Press <ENTER> when done.

4. Press <Left Arrow> and return to the [Channel Setup] menu.

Note

After site configuration procedures that follow are complete the newly created site must be saved again to retain the new site data. Refer to the Save/Rename Site procedure below.

Select Pipe Class

- 1. Press the <Right Arrow> to select [Pick Pipe Class]. Press <Right Arrow> again and scroll to desired Pipe Class.
- 2. Press <ENTER> to select.

Siemens	2-Channel [1]	ABC
Pick Pipe Class		
Pick Pipe Class	ASA Carl	o. Steel
Select Pipe Size	8CS40	
Pipe OD <in></in>	8.625	
Pipe Material	Steel	
Wall Thickness	0.322	
Liner Material	None	
Liner Thickness	0.000	
Pipe Data		

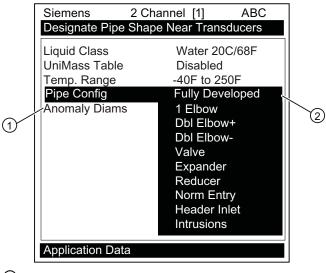
 Pre-programmed Pipe Size and relevant pipe parameters will appear in menu cells. Press <Right Arrow> and scroll to desired pipe size. Press <ENTER>. Enter dimensions manually if pre-programmed dimensions do not match application.

Note

The DN sizes listed in the [Select Pipe Size] menu option list are referenced to DIN Table 2448. After selecting pipe size, check pipe OD and wall thickness for correct dimensions.

4. Press the <Left Arrow> and return to the main menu.

Select Liquid Class


- 1. Press the <Down Arrow> and scroll to [Application Data].
- 2. Press the <Right Arrow> to select [Liquid Class].
- 3. Press the <Right Arrow> again and scroll to desired liquid.
- 4. Press <ENTER> to save selection.

Siemens	2 Channel [1] ABC	
Select Liquic	I Class from Liqu	uid Table	
Liquid Class	s Wa	ter 20C/68F	
UniMass Ta Temp. Rang Pipe Config Anomaly Di	ge -40 Fu	sabled F to 250F Ily Developed	
Application I	Data		

① Select from list.

Select Pipe Configuration

- 1. Scroll down to [Pipe Config] and press the <Right Arrow>.
- 2. Select a configuration that approximates the conditions upstream of your sensor mounting location. (Refer to the definitions below.)
- 3. Press <ENTER> to save selection.

- (1) Use this menu cell to enter the number of pipe diameters between the upstream configuration and the Sensor installation.
- ② Use this menu cell to select the pipe configuration that most accurately represents the upstream pipe condition.
- 4. Press the <Left Arrow> and return to the main menu.

Table 5-2 Pipe Configuration Option List Definitions

Options	Definitions
Fully Developed	Fully developed flow, as would be expected for very long straight pipe runs or installation downstream of a flow condition.
1 Elbow	Single 90 degree Elbow upstream of sensor installation.
Dble Elbow+	Double out-of-plane Elbows upstream of sensor installation.
Dble Elbow-	Double in-plane Elbows upstream of sensor installation.
Valve	Not available at this time.
Expander	Pipe expansion upstream of sensor installation.
Reducer	Pipe reduction upstream of sensor installation.
Norm Entry	Not available at this time.
Header Inlet	Header or pipe manifold upstream of sensor installation.
Intrusions	Not available at this time.

Save/Rename Site procedure

Whenever new site configurations are added to an existing site that site must be saved again to retain the new site changes.

- 1. To save all programmed data to site, press <Left Arrow> and then scroll up to [Channel Setup].
- 2. Press <Right Arrow> and scroll to [Save/Rename Site].

Siemens	2 Channel [1]	SITE1	
	er to save Site Setu		
Recall Site Channel Enab Create/Name Site Security Delete Site	Site SITE1		
Save/Rename	Site		
Chan Setup			

① The saved site name now appears in the menu screen.

- 3. Press <Right Arrow> and then <ENTER> to save all programmed data to site.
- 4. To return to the top menu level, continue to press the <Left Arrow> key.

5.5 Sensor Installation

5.5.1 Preliminary Installation Procedures

Reflect and Direct Sensor Mounting

Reflect and Direct mounting modes are supported for clamp-on sensors. The flow meter recommends a mounting mode after analyzing your pipe and liquid data entries.

Note

When installing sensors, do not key in the V/M (Version/Modification) label number as the Sensor Size.

```
Connecting
```

Clamp-on Sensor Mounting Modes

The transmitter recommends a mounting mode after analyzing your pipe and liquid data entries. However, you can install clamp-on sensors in the way that best suits your application and the sensor type you have purchased.

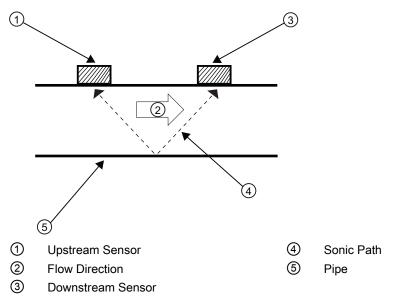


Figure 5-6 Reflect Mount (Pipe shown from above in 12 o'clock position)

Reflect mount is recommended whenever possible. This is the simplest way to mount the sensors. Also, Reflect mount resists abnormal flow profile conditions such as cross-flow within the flow stream. Reflect mount supports the AutoZero function, which zeroes the flow meter automatically without user-participation. In addition, Reflect mount may be the only possibility if conditions do not allow access to the opposite side of the pipe.

Direct mount provides a shorter sonic beam path. This usually improves performance with sonically attenuative liquids or pipe materials. Direct mount is recommended for plastic pipes. Compared to Direct mounting, Reflect mount requires almost double the amount of mounting length. Therefore, Direct mount may be the only option if the availability of mounting space is limited.

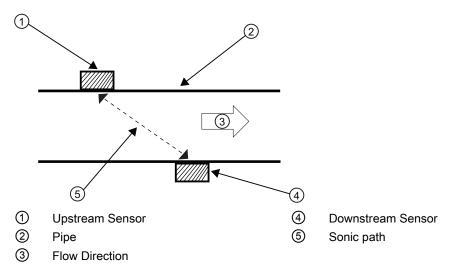


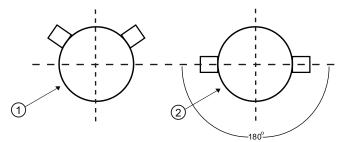
Figure 5-7 Direct Mount (Pipe shown from above in 12 o'clock position)

Mounting Supplies

The following items will be needed to mount the sensors (most are supplied):

- Flat blade screwdriver
- Mounting Frames or Mounting tracks
- Tape, chalk and a ruler or measuring tape
- Mounting Straps
- Spacer Bar
- Mounting Guide (for Direct Mount)
- Ultrasonic coupling compound and/or coupling pads
- Sensors (matched set)

Mounting Strap Kits


The available Mounting Strap kits are listed below. Each kit comes with up to two band sizes to cover its designated pipe diameter range and a spacing guide for Direct Mount.

Mounting Strap Kits	Pipe Diameter	SAE Band Sizes (Qty.)
7ME396000SM00	50.8mm (2-inch) to 177.8mm (7-inch)	#88 (2) #128 (2)
7ME396000SM10	50.8mm (2-inch) to 330.2mm (13-inch)	#88 (2) #152 (2)
7ME396000SM20	330.2mm (13-inch) to 609.6mm (24- inch)	#188 (2) #280 (2)
7ME396000SM30	609.6mm (24-inch) to 1219.2mm (48- inch)	#152 (4) #312 (4)

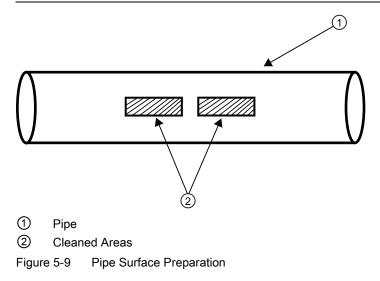
```
Connecting
```

Selecting a location for the sensors

- 1. Locate the sensors downstream from the center of the longest available straight run. A location ten pipe diameters or greater downstream from the nearest bend will provide adequate flow profile conditions.
- 2. Do not, if possible, install the sensors downstream from a throttling valve, a mixing tank, the discharge of a positive displacement pump or any other equipment that could possibly aerate the liquid. The best location will be as free as possible from flow disturbances, vibration, sources of heat, noise, or radiated energy.
- 3. Avoid mounting the sensors on a section of pipe with any external scale. Remove all scale, rust, loose paint, etc., from the location.
- 4. Do not mount the sensors on a surface aberration (pipe seam, etc.)
- 5. Do not mount sensors from different ultrasonic flow meters on the same pipe. Also, do not run the sensor cables in common bundles with cables from other instrumentation. You can run these cables through a common conduit ONLY if they originate at the same flow meter.
- 6. Never mount sensors under water, unless you order submersible units and you install them in accordance with factory instructions.
- 7. Avoid mounting sensors on the top or bottom of a horizontal pipe. The best placement on a horizontal pipe is either the ten o'clock and two o'clock position for Reflect Mode, or one sensor at nine o'clock and one sensor at three o'clock for Direct Mode. Mounting on a vertical pipe is recommended only if flow is in the upward direction. When mounting on a vertical pipe flowing in a downward direction make sure there is sufficient back pressure in the system to maintain a full pipe.

- 1 Dual Path, Reflect Mount
- 2 Dual Path, Direct Mount

Figure 5-8 Sensor Alignment (Horizontal Plane)

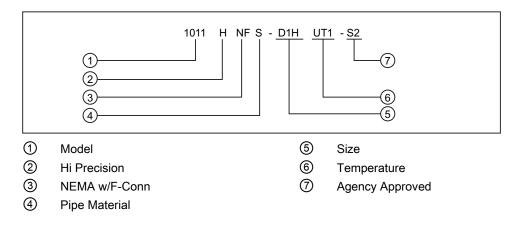

Preparing the Pipe

- 1. Pick a mounting location with the longest straight run. You must have easy access to at least one side of your pipe. The pipe at the mounting location must remain full, even at zero flow.
- 2. Decide on your mounting mode (Direct or Reflect). Always use Reflect Mode whenever possible. You may only need to use Direct Mode if your pipe is plastic.

3. After receiving the spacing dimensions from the Installation Menu, prepare the pipe surface. De-grease the surface, if necessary, and remove any grit, corrosion, rust, loose paint, etc. Use abrasive material provided to provide a clean contact surface for the sensors.

Note

Please note that the instructions show vertical mounting for clarity purposes only. Do not install sensors on the top of a pipe.



- 4. Clean an area 13 mm (1/2-inch) on either side of the sensors.
- 5. Clean an additional 13 mm (1/2-inch) along the length of the sensors.

5.5.2 Sensor Identification and Selection

Sensor identification

The sensor part number located on the front face provides a detailed identification. For example, the Part Number: 1011HNS-D1T1-S2 means:

Note

Check to make sure that the sensors are a matched set with the same serial numbers and marked with an "A" and "B" (e.g., 19256A and 19256B).

Note

Sensor Model names for Version 3 op systems are as follows: 1011H Hi Precision, 1011 Universal and 991 Universal

Typical Sensor Labels

Ex II 1 G	Siemens Industry Made in USA	y, Inc
KEMA03ATEX1134 C C 1180 N Ex ia IIC T5 Tamb=+6 (Tproc= -50° To +120° PER SIEMENS DWG. 1011	°C)	1010-402 rev 07
XXXXUniversal	SENSOR]•(1
1011P1PS-B2		
PART NUMBER BA	R CODE	
V/M A2	B	2
S/N: E0034B	SI	ZE
S/N BAR CODE		
① Universal Sensor m	odel number	

Sensor size

Figure 5-10 Universal Sensor Label

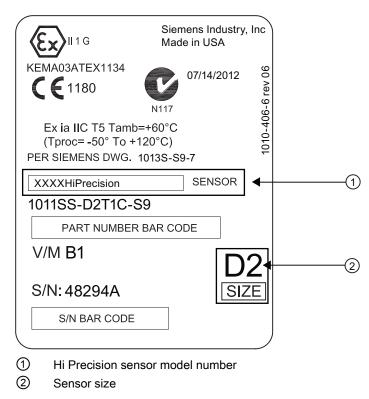


Figure 5-11 Hi Precision Sensor Label

Sensor Selection

The following is a typical sensor selection procedure.

Note

The transmitter must be powered up before you can select a sensor model. Refer to Transmitter Wiring (Page 39).

- 1. Press <Left Arrow> to return to main menu. At [Meter Type], press the <Right Arrow> and then <ENTER>.
- 2. The [Channel Setup] menu will appear.
- 3. Press the <Down Arrow> to select [install Sensor].
- 4. Press the <Right Arrow> to [Sensor Model]. Press <Right Arrow> and scroll to select the sensor model number on the sensor label.

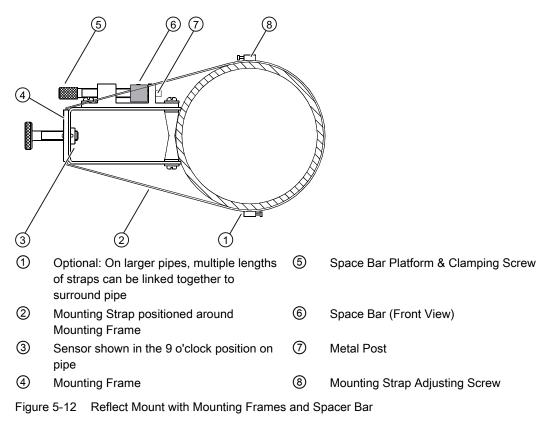
- 5. The drop down menu lists the following sensor selections:
 - 1011 Universal
 - 1011HP-T1 Usable -40 to 120°C, recommended for Ø Temperature <40°C; Standard.
 - 1011HP-T2 Usable -40 to 120°C, recommended for Ø Temperature >40°C <80°C; Named as high temperature.
 - 1011HP-T3 Usable -40 to 120°C, recommended for Ø Temperature >80°C <120°C; special request.
 - 991 Universal

Note

The meter will automatically recommend a sensor depending on the application data that has been entered.

 For this example, select the sensor model that appears on the sensor label then press <ENTER>.

Siemens D	ual Path [1]	ABC]
Scroll List and select desired Model			
Install Path	1		0
Sensor Model	1011HP-T1	6	
Sensor Size	D1H ———		Í
Sensor Mount Mod	e Reflect		
Spacing Offset	Nominal		
Number Index	26		
Spacing Method	Spacer Bar	1012BN	
Ltn Vaue (in)	7.499		
Install Complete	No		Í
Empty Pipe Set	MTYmatic		
Zero Flow Adjust	Actual Zero		
Install Sensor			


- ① Select based on type
- ② Select based on size
- ③ After sensor is mounted select "Install."
- 7. To select Sensor Size, press <Right Arrow>. Scroll to select the sensor size that matches the size indicated on the sensor label. Press <ENTER>.
- 8. At [Sensor Mount Mode], press the <Right Arrow>. Scroll to select [Reflect] or [Direct] mount and then press <ENTER>.
- 9. IMPORTANT: Record Spacing Method and Number Index. This data will be used to mount the sensors.
- 10.Sensors can now be mounted. Refer to Sensor Installation mounting procedures and select the mounting mode desired.
- 11. After sensors are mounted scroll to [Install Complete] and select [Install].

5.5.3 Reflect Mount

Reflect Mount - Sensor Installation using Mounting Frames and Spacer Bar

- 1. After receiving the spacing index from the Installation Menu, prepare the pipe surface area where the sensors will be mounted.
- 2. Degrease the surface and remove any grit, corrosion, rust, loose paint, etc.

Before beginning refer to the Reflect Mount Installation diagram example below.

Note

Minimum Ltn 18 mm (0.75 in).

Ltn Menu Cell

This view only menu cell shows the distance in inches or millimeters between the front faces of the sensors along the axis of the pipe. If you are mounting the sensors without a track or spacer bar, you have to space them according to this value. Note that Ltn may be a negative number for direct mount on very small pipes where the sensor spacing overlaps.

Preparing the Pipe

- 1. On a flat surface, attach the Spacer Bar to a Mounting Frame so that the Reference Hole on the Spacer Bar fits over the metal post on the platform of the frame. Tighten the clamping screw.
- 2. Slide the second Mounting Frame onto the other end of the Spacer Bar and align the Number Index Hole with the metal post on the platform. Then tighten the clamping screw. *Ensure that the angled sides of both frames face away from each other.*
- 3. Wrap a Mounting Strap around the pipe. Make sure to position it so there is easy access to the Mounting Strap Adjusting Screw.
- 4. At the mounting location, place the Mounting Frame/Spacer Bar Assembly on the pipe so that it rests on the top of the pipe.
- 5. Engage the end of the Mounting Strap with the Mounting Strap Adjusting Screw.
- 6. Slide strap under the spring clip of one of the Mounting Frames.
- 7. Tighten the Mounting Strap Screw enough to take up all of the slack, but not enough to prevent rotation of the assembly. *Repeat procedure for the other Mounting Frame*.
- 8. Rotate the assembly on the pipe to the final conditioned location, ensuring that it is straight along the pipe axis. (Refer to the sensor orientation diagram)
- 9. Tighten the mounting straps to seat the assembly firmly on the pipe. Do not over tighten.

Installing the Sensor

1. Take either sensor and apply a continuous lengthwise 3mm (1/8-inch) bead of coupling compound across the center of the sensor emitting surface.

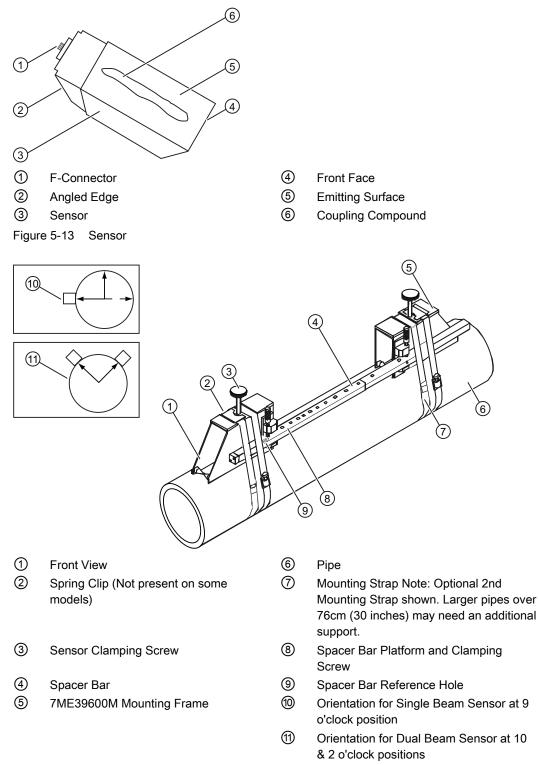


Figure 5-14 Sensor Installation

FUS1010 IP65 NEMA 4X & IP66 NEMA 7 Operating Instructions, 01/2013, A5E02951520-AC

- 2. Slide sensor into a mounting frame back end first aligning the angled edge of the sensor with the angled edge of the mounting frame. Keep sensor from making contact with the pipe until it butts up against the mounting frame stop. Push sensor down to mate with pipe.
- 3. Tighten the sensor clamping screws to hold the sensor firmly in place. *Repeat procedure for the other sensor.*
- 4. If installing a temperature sensor proceed to Mounting Temperature Sensor (Page 78). If not, proceed to Sensor Wiring (Page 80).

5.5.4 Direct Mount

Sensor Installation using Mounting Frames, Spacer Bar and Spacing Guides

The combination of mounting frames, spacer bar and spacing guides is the recommended way to mount Direct Mode sensors. The mounting frame establishes the axial alignment of the sensors and allows you to remove and replace either sensor while preserving their exact mounting location.

For Direct Mode mounting, a spacer bar is used to establish the distance between sensors and a spacing guide to locate the sensors at the nine o'clock and three o'clock positions. Should the distance between sensors be beyond the span of a spacer bar, a measuring tape can be used. The Mylar spacing guide comes in various lengths and widths to accommodate most pipe sizes.

Spacing Guide Sizes		
Metric	English	
5.08cm x 66.04cm	2" x 26"	
5.08cm x 114.3cm	2" x 45"	
10.16cm x 393.7cm	4" x 155"	
15.2cm x 497.8cm	6" x 196"	

Figure 5-15 Mylar Spacing Guide

- 1. After receiving the spacing index from the Installation Menu, prepare the pipe surface area where the sensors will be mounted.
- 2. Degrease the surface and remove any grit, corrosion, rust, loose paint, etc.
- 3. Make a note of the Number Index displayed in the [Install] menu. Check to ensure that you have a matched set of sensors. They both should have the same S/N number but marked with either an "A" or "B" (e.g., 100A and 100B).

- 4. Temporarily position one of the frames on the pipe where you will be mounting it. Ensure that this is a smooth area without any raised areas (seams, etc.) With a pencil or chalk, mark a generous area of 13 mm (1/2") all around the frame. Remove the assembly.
- 5. Prepare the area you marked by de-greasing surface, if needed, and removing any grit, corrosion, rust, loose paint or surface irregularities with the abrasive material provided
- 6. Put a mounting strap around the pipe and engage an end into adjusting screw (screw should be pointing up). Position frame in the middle of area you have cleaned and centered on the pipe with its angled end facing away from where the other frame will sit.

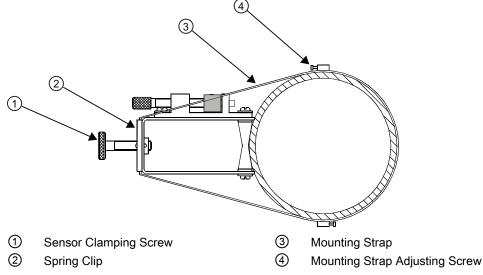
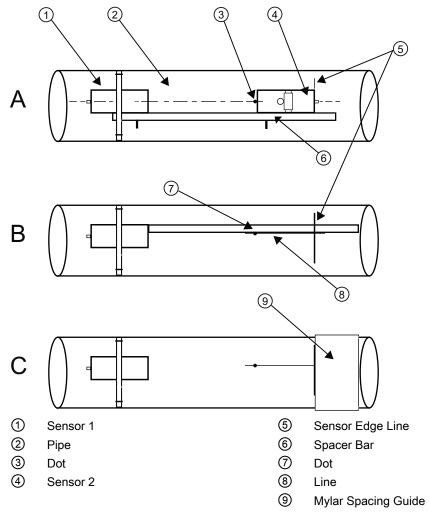
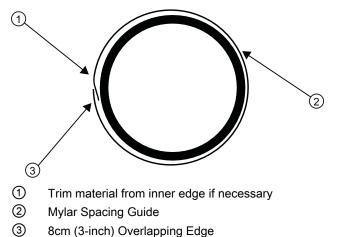
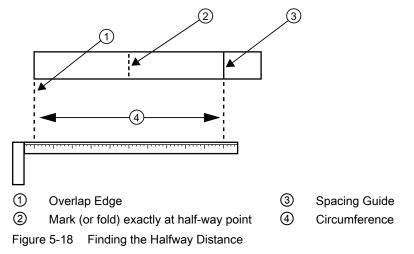



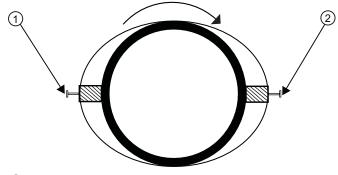
Figure 5-16 Wrap Strap Under Pipe and Attach to Adjusting Screw

- 7. Slide the mounting strap over it (and under the clip if there is one) and tighten with a screwdriver. While tightening, check to ensure that the center of the tapered roller is centered on the pipe.
- 8. Attach the second frame to the spacer bar with an index spacer screw into the index hole specified in Step 1. The angle on the frame should be facing away from the direction that the length of the bar is going.

9. Now attach the free end of the spacer bar by inserting an index spacer screw through the REF hole on the spacer bar and then into the hole on the mounted frame. Tighten. Sight to ensure that this frame is lined up in center of pipe and while holding alignment, place a dot (with pencil or chalk) in the center of the tapered roller at the bottom of the frame (see A below). While holding, also mark along the front edge of the frame with pencil or fine chalk line (see B below).

10.Disassemble the spacer bar and the unmounted frame. Use the bar as a straight edge and, with one edge against the mounted frames tapered roller center and the other crossing the dot you drew, draw a line crossing the dot (see "B" above). Set the bar aside.


Figure 5-17 Wrapping the Mylar Spacing Guide around the pipe (End View)

- 11.Wrap the Mylar spacing guide around the pipe so that the left edge is against the sensor edge mark (see "C" above). Arrange so that one end overlaps the other by at least three inches. Trim to fit if necessary, but be sure not to trim at the overlapping end in order to keep it square.
- 12.Realign left edge of the guide with the sensor edge mark. Line up both vertical edges of the guide and ensuring that it is snug around the pipe, mark along the overlapping edge.
- 13. Remove Mylar spacing guide and lay it out on a flat surface. Either measure the exact distance half-way between the overlap edge and the mark at the overlap, or fold the guide from the overlap edge to overlap mark and draw a line at the fold or halfway point.

14. Reinstall the spacing guide; its left edge abutting the sensors edge mark on the pipe and the overlapping edge in line with the dot (now a line) on the pipe (see "C). Tape it in this position on the pipe. Take the second frame and place it against the edge of the guide with its tapered roller centered on the center mark on the guide.

15. Temporarily position the frame (in the 3 o'clock position opposite the mounted frame - see below) where it will be mounted. Ensure that this is a smooth area without any raised spots (seams, etc.). Mark a generous area of 13 mm (1/2-inch) all around the mounting frames with a pencil or chalk. Remove the frame and the Mylar guide.

- 1 9 o'clock Sensor
- ② 3 o'clock Sensor
- Figure 5-19 Aligning the Sensors for Direct Mode operation (End View)
- 16.Prepare the area you marked by de-greasing the surface, if needed, and removing any grit, corrosion, rust, loose paint or surface irregularities with the abrasive pipe conditioning material provided. Clean the pipe of any debris and abrasive particles.
- 17.Replace the Mylar guide back in the same position it was in and retape it to the pipe
- 18.Put a mounting strap around the pipe and engage an end into adjusting screw (screw should be pointing up).
- 19. Position frame in the middle of area you have cleaned and centered on the pipe with its angled end facing away from where the other frame will sit and aligned with the edge and center marks on the guide. Slide the mounting strap over it (and under the clip if there is one) and tighten with a screwdriver. While tightening, check to ensure that the center of the tapered roller is centered on the pipe.
- 20.Take either sensor and apply a continuous lengthwise 3 mm (1/8-inch) bead of coupling compound across the center of the sensor emitting surface.
- 21. Tighten the sensor clamping screws to hold the sensor firmly in place. *Repeat procedure for the other sensor.*
- 22.Slide sensor into a mounting frame back end first aligning the angled edge of the sensor with the angled edge of the mounting frame. Keep sensor from making contact with the pipe until it butts up against the mounting frame stop. Push sensor down to mate with pipe.
- 23.Open the transmitter top cover. Using a flat blade screwdriver, remove the Cable Strain Relief bracket.
- 24.Observing the upstream and downstream orientation, attach the UP (upstream) and DN (downstream) cables to the sensors and make snug. Attach the other ends to the UP and DN terminals of the transmitter.
- 25.Replace the Cable Strain Relief bracket. Close top cover.
- 26.Proceed to Commissioning (Page 83).

5.5.5 1012T Mounting Tracks

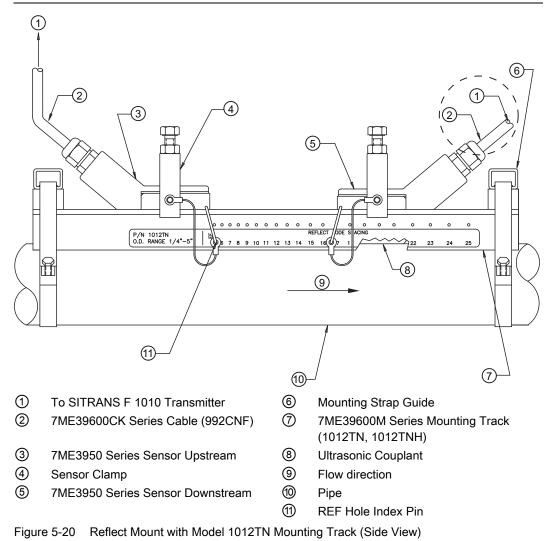
Using 1012T Sensor Mounting Tracks

The 1012TN and 1012TNH Mounting Tracks provide a rigid mounting platform for Series 1011 Universal or high precision size A or B sensors. The mounting tracks service pipe sizes up to a maximum of 140mm (5.00") outer diameter. The 1012T mounting tracks support both Direct and Reflect mounting modes. The transmitter recommends the appropriate sensors, mounting track and mounting mode, based on the pipe data entries.

Installing a 1012T Mounting Track in Reflect Mode

The Sensor Installation procedures show how the automatic selection of sensors, mounting mode and spacing method are established. Examine the figure below, which illustrates a typical [Install Sensor] menu screen. Note the automatic assignment of mounting track part number, plus the designation of the number index.

Siemens	Dual Path [1]	SITE1
Install Complete	?	
Install Path	1	
Sensor Model	1011HP	-T1 (1)
Sensor Size	B3 🗲	
Sensor Mount M	ode Reflect	
Spacing Offset	Minimur	n
Number Index	6 🗲	2
Spacing Method	Track 10)12TN
Ltn Value (in)	0.581	
Install Complete	No	
Empty Pipe Set	Channe	I Not Setup
Zero Flow Adjus	t Channe	I Not Setup
Install Sensor		


① Sensor type, size and mounting mode selection.

2 Automatic selection of mounting track part number and number index.

- 1. Perform all required menu steps up until the point where you respond to the [Install Complete] prompt.
- Make note of the Number Index. Check to ensure that you have a matched set of sensors. They both should have the same serial number but marked with either an "A" or "B" (e.g. 100A and 100B).

Note

Index pins are used as stops against each sensor inserted at the reference hole for one sensor and the Number Index hole for the other sensor (see ① in figure below).

- 3. Place the track rail assembly on the top surface of the pipe at the location where you have determined it would be mounted. Ensure that it is a smooth area without any raised spots or seams.
- 4. Holding the mounting track assembly in place, loop one of the strap clamps under the pipe, pull it around and maintain tension while slipping a link over the tension screw hook. Tighten the tension screw enough to hold the assembly on the pipe, but still allow rotation. Repeat for the other mounting strap.

- 5. Rotate the track rail assembly to the intended mounting position on the pipe, then tighten both tension screws just enough to prevent rotation. Do not over tighten.
- 6. With a pencil or chalk mark a generous area around the perimeter of the track assembly. Loosen and move the assembly away from marked area.
- 7. Prepare the area you marked by degreasing the surface, if needed, and removing any grit, corrosion, rust, loose paint or surface irregularities with the abrasive pipe conditioning material provided. Clean the pipe of all debris and abrasive particles.
- 8. Rotate the track into the position that was just cleaned. Insert the index pin into the REF hole.
- 9. Insert the index pin into the reference hole.
- 10.Select a sensor and apply a thin band of couplant compound to the sensor's emitting surface.
- 11.Place the sensor between the track rails, slightly behind the pin and under the clamping screw assembly. Slide it forward until it butts up firmly against the reference pin.
- 12. Once the sensor is in place secure it with the sensor clamping screw. Do not over tighten.
- 13.Repeat the procedure for the Number Index sensor making sure to insert an index pin into the correct Number Index hole. Refer to the Model 1012TN Mounting Track (side view) figure above.
- 14.Observing the upstream and downstream orientation, attach the UP (upstream) and DN (downstream) cables to the sensors and make snug. Attach the other ends to the UP and DN terminals of the flow meter.

```
Connecting
```

5.5 Sensor Installation

Installing a 1012T Mounting Track in Direct Mode

The Sensor Installation procedures show how the automatic selection of sensors, mounting mode and spacing method are established. Examine the figure below, which illustrates a typical [Install Sensor] menu screen. Note the automatic assignment of model numbers for the sensor and mounting track, plus the designation of the number index.

Siemens	Dual Path [1]	SITE1	
Install Complete	?		
Install Path	1		
Sensor Model	1011HF	P-T1	
Sensor Size	B3		
Sensor Mount M	ode Direct		
Spacing Offset	Minimu	m	_
Number Index	4 🗲	\longrightarrow	1
Spacing Method	Track 1	012TN	
Ltn Value (in)	0.217		
Install Complete	No		
Empty Pipe Set	Channe	el Not Setup	
Zero Flow Adjust	Channe	el Not Setup	
Install Sensor			

① Automatic selection of mounting track part number , mount mode and number index

The combination of two Model 1012TN Mounting Tracks and a spacer guide is the recommended way to mount sensors in the Direct Mode. This method ensures that sensors will align exactly 180° from each other and remain spaced the proper distance apart.

The Direct Mount configuration uses a set of two track rail assemblies; one for each sensor, installed 180° apart on the pipe. The set includes:

- Reflect Mode Track Assembly This track rail includes the Tension Screw and REF hole to position one sensor.
- Direct Mode Track Assembly This track rail has number index holes for inserting an index pin to position the other sensor.

Note

A pin will be inserted into the hole designated by the Number Index on the Direct Mode track rail to position one of the sensors (see 10) in figure below).

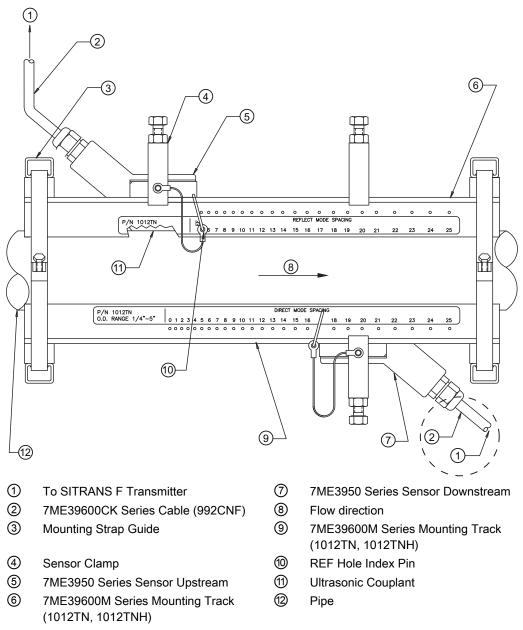


Figure 5-21 Direct Mount 180° opposed with Mounting Tracks

5.5 Sensor Installation

- 1. Perform all required menu programming steps up until the point where you respond to the [Install Complete?] prompt.
- 2. Make a note of the reported Number Index displayed in the [Install Sensor] menu. Check to ensure that you have a matched set of sensors. They both should have the same serial number but marked with either an "A" or "B" (e.g. 100A and 100B).

Note

Some sensors require a right-angle adapter. This adapter should be installed before placing the sensors in the tracks.

- 3. Prepare pipe for the track mounts by degreasing the surface, if needed, and removing any grit, corrosion, rust, loose paint or surface irregularities with the abrasive pipe conditioning material provided.
- 4. If this is a horizontal pipe, place the track rail assembly against the pipe. While holding track, place second track on pipe directly underneath (180°) and hold together in place.
- 5. Wrap the mounting strap around the pipe and through the strap guide.

Note

For a vertical pipe installation, use a tie, tape or bungee cord to hold the two tracks in place while mounting.

6. Finger-tighten the chain Tension Screw to secure the strap and tracks to the pipe.

Positioning Track Assemblies

1. Wrap a length of the Mylar spacing guide around the pipe and against the end of the track assemblies. Ensure that the spacer guide edges on both sides align. Arrange so that one end overlaps the other by at least 8 cm (3 inches). Trim to fit if necessary, but in order to keep the end square, be sure not to trim at the overlapping end.

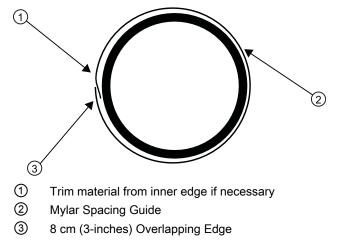
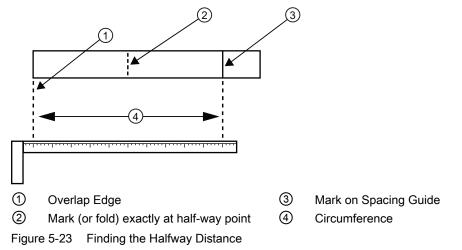
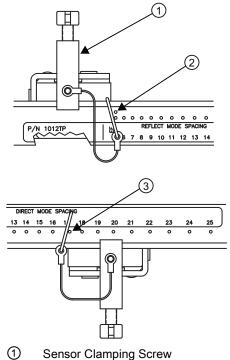



Figure 5-22 Wrapping the Mylar Spacing Guide around the pipe (End View)

2. Remove the spacer guide. Measure or fold spacer guide to find its halfway distance. Mark a center line and then tape spacer guide to pipe.

5.5 Sensor Installation



3. Use the edge of the Spacer Guide as a stop for both tracks to keep them parallel. Adjust tracks as necessary.

- ① Align tracks with Spacer Guide edge
- ② Mylar Spacer Guide
- 3 Halfway distance of Spacer Guide
- Figure 5-24 Track Rail Alignment
- 4. Loosen the mounting straps enough to allow you to rotate the track assembly until the center of one track aligns with the center line on the Spacer Guide and the center of the other track aligns at the point where the Spacer Guide ends meet. The tracks should now be 180° apart. Tighten both chains but not too tight.

Sensor Installation

- 1. Insert an index pin into the REF hole of the track marked "Reflect Mode Spacing."
- 2. Take one of the sensors and insert it between the track rails and to the left of the index pin with the cable connector pointing away from the pin. Move the sensor until the pin stops it. Hold sensor in place. Move sensor clamping screw over the sensor and tighten.

- REF hole

③ Number Index hole

Figure 5-25 REF and Number Index Pin Locations

- 3. Insert the other index pin into the correct Number Index hole on the other track marked "Direct Mode Spacing."
- 4. Insert the second sensor into the track rail with its cable connector pointing away from the pin. Move the sensor until it's stopped by the pin. Move sensor clamping screw over the sensor and tighten.
- 5. Using a pencil or chalk, mark a generous area around where the sensors contact the pipe.
- 6. Release the tension on the sensors and remove them.
- 7. Loosen the mounting straps and rotate the track assembly on the pipe so you can gain access to the areas marked.
- 8. Prepare the areas you marked by degreasing the surface, if needed, and removing any grit, corrosion, rust, loose paint or surface irregularities with the abrasive pipe conditioning material provided.
- 9. Rotate the track assemblies into their original position on the pipe. Use the edge of the Mylar guide as a stop for both tracks and keep them parallel. Align each track with the "center line" you previously marked on the Spacing Guide. Tighten tracks securely.

5.6 Mounting Temperature Sensors

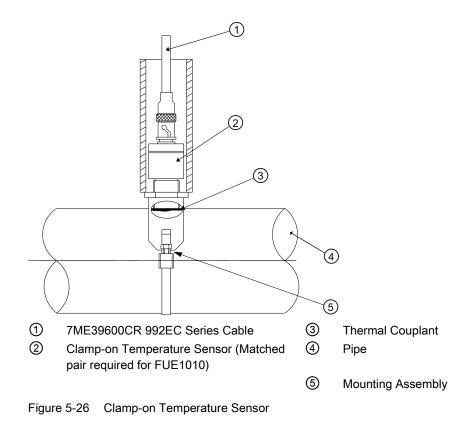
10. This time, before installing each sensor, apply a 3mm (1/8-inch) continuous bead of couplant compound along the center (the long way) of the contact surface of the sensor. Also, keep the sensors lifted slightly from the pipe when installing until the sensor is against the pin; then push down against the pipe.

Note

Remember to install the sensors with the cable connectors facing away from each other.

- 11. Once the sensors are in place, secure with its clamping screws. Do not over tighten.
- 12.Observing the upstream and downstream orientation, attach the UP (upstream) and DN (downstream) cables to the sensors and make snug. Attach the other ends to the UP and DN terminals of the flow meter.
- 13. Proceed to Commissioning (Page 83).

5.6 Mounting Temperature Sensors

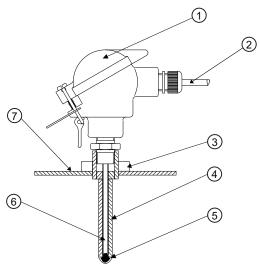

Temperature is used to normalize the liquids sonic velocity in order to properly determine interfaces and for density determination. Temperature sensors are available in clamp-on style or in insert (Thermowell) style. Refer to the table below. Both styles incorporate 1000 ohm platinum RTD's for high precision.

Description	Part Number
Standard clamp-on RTD	7ME39501TA00
Submersible clamp-on RTD (not for FUP1010 or FUE1010	7ME39501TB00
Standard clamp-on RTD pair for FUE1010 energy system	7ME39501TA10
Insertion style RTD (size 1): 140mm (5.5 in)	7ME39501TJ00
Insertion style RTD (size 2): 216mm (8.5 in)	7ME39501TJ01
Insertion style RTD (size 3): 292mm (11.5 in)	7ME39501TJ02
Insertion style RTD (size 4): 368mm (14.5 in)	7ME39501TJ03
Insertion style RTD pair (size 1) for FUE1010, 140mm (5.5 in)	7ME39501TJ10
Insertion style RTD pair (size 2) for FUE1010, 216mm (8.5 in)	7ME39501TJ11
Insertion style RTD pair (size 3) for FUE1010, 292mm (11.5 in)	7ME39501TJ12
Insertion style RTD pair (size 4) for FUE1010, 368mm (14.5 in)	7ME39501TJ13

Table 5-3 Temperature Sensors

Connecting

5.6 Mounting Temperature Sensors




```
Connecting
```

5.7 Sensor Wiring

Clamp-on Sensors

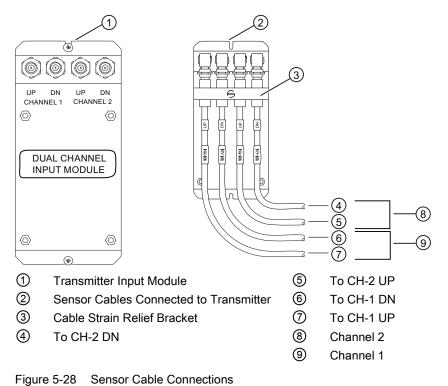
Clamp-on style sensors are mounted on the surface of the monitored pipe using series mounting assemblies. Apply a generous quantity of the thermal couplant provided to the tip of the sensor and attach it securely to the cleaned pipe surface with the proper mounting assembly. Temperature measurement anomalies resulting from variations in the ambient conditions can be minimized by insulating the pipe and sensor after installation.

- Temperature Sensor Connector Head Assembly
- 2 7ME39600CR 992EC Series Cable
- ③ Threaded Pipe Fitting
- 4 Thermowell

Figure 5-27 Insert Temperature Sensor

- 5 Thermal Couplant
- 6 Spring Loaded Sensing Element
- ⑦ Pipe Wall

Insert sensors are designed to be used in pipes equipped with Thermowells. These are spring-loaded, 1/4" diameter sensors with 1/2" NPT integral connection heads, available in several lengths to accommodate a range of pipe sizes.


Proceed to Commissioning (Page 83).

5.7 Sensor Wiring

Connecting Sensors to the Transmitter

- 1. Open the transmitter top cover. Using a flat blade screwdriver, remove the Cable Strain Relief bracket (see figure below).
- 2. Observing the upstream and downstream orientation, attach the UP (upstream) and DN (downstream) cables to the sensors and make snug. Attach the other ends to the UP and DN terminals of the flow meter (see figure below).
- 3. Replace the Cable Strain Relief bracket. Close top cover.

4. Proceed to Commissioning (Page 83).

Connecting

5.7 Sensor Wiring

6.1 General requirements

Before commissioning it must be checked that:

- The device has been installed and connected in accordance with the guidelines provided in chapter 4 "Installing/mounting (Page 33)" and chapter 5 "Connecting (Page 37)"
- Device installed in hazardous location meets the requirements described in "Installation in hazardous location (Page 14)"

6.2 Commissioning

Note

Refer to [Programming the Transmitter] (Page 49) if needed.

1. Scroll down to [Install Sensor] and press <Right Arrow>.

2. Scroll down to [Install Complete]. Press the <Right Arrow> and select [Install]. Press <ENTER>. The flow meter will go through its drives.

Siemens	2 Channel [1]	ABC				
Key [Install] afte	Key [Install] after mounting sensors					
Sensor Model 1011HP-T1						
Sensor Size	D1H					
Sensor Mount N	lode Reflect					
Spacing Offset	Nomina	al				
Number Index	26					
Spacing Method	d Spacer	Bar 1012BN				
Ltn Value (in)	7.499					
Install Complete	e Yes					
Empty Pipe Set	Channe	el Not Setup				
Zero Flow Adjus	st Channe	el Not Setup				
Install Sensor						

Figure 6-1 Final Setup

Siemens	2 Channel [1]	ABC
Drive 14	[06:	:0]
Sensor Model	1011HP-T1	
Sensor Size	D1H	
Sensor Mount	/lode Reflect	
Spacing Offset	Measured Vs m/s	
Number Index	1489	
Spacing Metho	i Spacer Bai	012BN
Ltn Value (in)	7.499	
Install Complete	e Yes	
Empty Pipe Set	Channel N	lot Setup
Zero Flow Adjus	st Channel N	lot Setup
Install Sensor		

Figure 6-2 Measuring Flow

- 3. Observe the Measured Vs window and verify a correct sound velocity measurement (if known).
- 4. Press the <Down Arrow> to accept sound velocity value.
- 5. Press the <MENU> key.

Siemens	2 Channel [1]	ABC			
Conforms Indicated flow to Actual zero					
Sensor Model	1011HF	P-T-1			
Sensor Size	D1H				
Sensor Mount	Node Reflect	<u>t</u>			
Spacing Offse	Save/Rename Si	te			
Number Index	ABC				
Spacing Metho	d Spacer Bai	012BN			
Ltn Value (in)	7.499				
Install Complete	e Yes				
Zero Flow Adju	st Actual	Zero			
Install Sensor					

- 6. Press the <Right Arrow> and then <ENTER> to save the site data.
- 7. The flow meter is now ready to report flow.

Siemens	2 Channel [1] ABC
	FLOW GAL/MIN	100.0
FAULT	1/ 20	
SPACE MAKUP	14.2.	ノ =
TOTAL	GAL Vs	Vfo—
354.6	597 14.27	GM —
		0.0———— 31.74

See also

Refer to I/O Connection Tables (Page 181) for input/output wiring and the Span Data manual section for data spanning procedures.

6.3 Empty Pipe Set

The flow meter performs the MTYmatic routine automatically during its Initial Make-up to establish a standard setting for the Empty Pipe alarm. This process is normally sufficient for setting this parameter. The [Empty Pipe Set] option list allows you to re-invoke MTYmatic, use an Actual MTY routine (if application conditions allow you to empty and refill the pipe) or use the Set Empty routine to set the empty pipe threshold by direct numeric entry.

Actual MTY Command

If application conditions allow you to empty and refill the pipe, then you may choose to perform the Actual Empty procedure; however, it is not required to do so.

NOTICE

IMPORTANT

NEVER perform the Actual MTY procedure if the pipe can not be emptied.

To use the Actual MTY command:

- 1. From [Channel Setup] scroll down to [Install Sensor].
- 2. Press the <Right Arrow> to access the [Empty Pipe Set] option list.

6.3 Empty Pipe Set

- 3. Press the <Down Arrow> to [Actual MTY] then press <ENTER>.
 - Empty Pipe Press [ENT] appears on the menu prompt line.

Siemens	2 Channel [1]	ABC
Empty Pipe	Press [ENT]	
Sensor Model	1011HP-	T1
Sensor Size	D1H	
Sensor Mount M	ode Reflect	
Spacing Offset	Normal	
Number Index	26	
Spacing Method	Spacer I	Bar 1012BN
Ltn Value (in)	7.499	
Install Complete	Set Emp	ty
Empty Pipe Set	MTYmat	ic
Zero Flow Adjust	>Actual	MTY
Install Sensor		

- 4. Empty the pipe completely, then press <ENTER>.
 - Fill Pipe Press [ENT] appears on the menu prompt line.

Siemens	2 Channel [1]	ABC
Fill Pipe	Press [ENT]	
Sensor Model Sensor Size Sensor Mount Mc Spacing Offset Number Index Spacing Method	Normal 26	1 ar 1012BN
Ltn Value (in) Install Complete Empty Pipe Set Zero Flow Adjust	Set Empt MTYmatic >Actual M)
Install Sensor		

5. Refill the pipe completely, then press <ENTER>.

Using the MTYmatic command

You can repeat MTYmatic (performed during the Initial Makeup) to correct an inaccurate Actual MTY setting if conditions do not allow you to repeat the Actual Empty procedure.

Note

IMPORTANT

Only use the MTYmatic procedure when the pipe is full.

To start MTYmatic:

- 1. From [Channel Setup] scroll down to [Install Sensor].
- 2. Press the <Right Arrow> to access the [Empty Pipe Set] option list.

Siemens	iemens 2 Channel [1] ABC					
Set Empty Pipe Detection Threshold						
Sensor Model 1011HP-T1						
Sensor Size	D1H					
Sensor Mount Mo	de Reflect					
Spacing Offset	Normal					
Number Index	26					
Spacing Method	Spacer Bar 1	012BN				
Ltn Value (in)	7.499					
Install Complete	Set Empty					
Empty Pipe Set	>MTYmatic					
Zero Flow Adjust	Actual MTY					
Install Sensor						

- 3. Move the cursor next to [MTYmatic] press the <Right Arrow>.
- 4. To invoke MTYmatic press <ENTER>.

Using the Set Empty command

Use [Set Empty] to enter a number that represents the signal strength level consistent with an empty pipe. [Set Empty] uses non-linear scaling. There is no direct correlation between the number you enter and any standard amplitude unit. If you set the number too low, the meter may not detect a true empty pipe. If you set it too high, it could trigger the empty pipe alarm, suspending flow measurement, even though the liquid is flowing.

To enter an Empty Pipe Alarm Threshold:

- 1. From [Channel Setup] scroll down to [Install Sensor].
- 2. Press the <Right Arrow> to access the [Empty Pipe Set] option list.
- 3. Press <Up Arrow> to move the cursor to [Set Empty].

6.4 Installation Menus

Siemens 2	2 Channel [1]	ABC			
Set Empty Pipe Detection Threshold					
Sensor Model	1011HP-T	1			
Sensor Size	D1H				
Sensor Mount Mod	Set Empty				
Spacing Offset	= 5				
Number Index	26				
Spacing Method	Spacer Ba	ar 1012BN			
Ltn Value (in)	7.499				
Install Complete	>Set Emp	ty			
Empty Pipe Set	MTYmatic	;			
Zero Flow Adjust	Actual MT	Υ			
Install Sensor					

- 4. Press <ENTER>. The current empty threshold number appears in a pop-up window.
- 5. Use the numeric keys to type a new Set Empty number.
- 6. To store the Set Empty number press <ENTER>

6.4 Installation Menus

FUS1010 Installation Menu Chart

Use <Left>, <Right>, <Up> and<Down> arrow buttons to navigate the menu between levels and sub menus.

For example: To navigate to [Sensor Size]:

- 1. Press <MENU> to return to Level A.
- 2. Press <Right Arrow> to Level B (2 Channel Flow) then press <ENTER>.
- 3. Scroll using <Down Arrow> to [Install Sensor].
- 4. Press <Right Arrow> to Level D.
- 5. Scroll using <Down Arrow> to [Sensor Size].
- 6. Press <ENTER> select size from list.

Note

Menu items in bold are required entries to establish operation.

Level A	Level B	Level C	Level D (see manual)	Level E	Level F
Meter Type	2 Channel Flow	Chan/1/2 Clamp- on	Recall Site Setup	Enter From List	
	Dual Path Flow	Ų	Channel Enable	No/Yes	
	Ch 1+2 Flow	Channel Setup ⇒	Create/Name Site	Enter From List	
	Ch 1-2 Flow		Site Security	On/Off	
	Reflexor		Delete Site	Enter From List	
			Save/Rename Site	Enter/Clear Site Name	
		Pipe Data	Pick Pipe Class	Enter From List	
			Select Pipe Size	Enter From List	
			Pipe OD (in)	Numeric Entry	
			Pipe Material	Enter From List	
			Wall Thickness	Numeric Entry	
			Liner Material	Enter From List	
			Liner Thickness	Numeric Entry	
		Application Data	Liquid Class	Select Liquid	Enter From List
				Estimated Vs M/S	Numeric Entry
				Viscosity <cs></cs>	Numeric Entry
				Density S.G.	Numeric Entry
			UniMass Table	Enter From List	
			Temp. Range	Enter From List	
			Pipe Config	Enter From List	
			Anomaly Diams	Numeric Entry	
		Install Sensor	Sensor Model	Enter From List	
			Sensor Size	Enter From List	
			Sensor Mount Mode	Enter From List	
			Spacing Offset	Enter From List	
			Number Index	View Only	
			Spacing Method	View Only	
			Ltn Value <in></in>	View Only	
			Install Complete	No / Install	Select Install
			Empty Pipe Set	Enter From List	
			Zero Flow Adjust	Enter From List	
		Operation Adjust	Damping Control	Time Average / SmartSlew	
			Deadband Control	Numeric Entry	
			Memory/Fault Set	Fault / Memory	
			Memory Delay (s)	N/A	
		Flow Total Units	Flow Vol. Units	Enter From List	
			Flow Time Units	Enter From List	

Level A	Level B	Level C	Level D (see manual)	Level E	Level F
			Flow Disp. Range	Enter From List	
			Flow Disp. Scale	Enter From List	
			Total Vol. Units	Enter From List	
			Totalizer Scale	Enter From List	
			Total Resolution	Enter From List	
			Totalizer Mode	Enter From List	
			Batch/Sample Tot	Numeric Entry	
		Span/Set/Cal	Span Data	Enter From List	
			Set Alarm Levels	Enter From List	
			Calib. Flowrate	Intrinsic	
				Кс	
				MultiPoint	
			Display Setup	Select Data	Enter From List
				Data Display	Enter From List
				Time Base	Enter From List
				StripChart Clear	No/Yes
			Logger Setup	Logger Mode	Enter From List
				Logger Data	Enter From List
				Logger Interval	Enter From List
				Logger Events	Enter From List
				Display Logger	Enter From List
			I/O Data Control	Analog Out Setup	Enter From List
				Relay Setup	Relay 1,2,3,4
				Analog Inp Setup	Enter From List
			Diagnostic Data	Flow Data	Enter From List
				Application Info	Enter From List
				Liquid Data	Enter From List
				Site Setup Data	Enter From List
				Test Facilities	Enter From List
				Print Site Setup	No/Yes
				Site Created:	View Only
Meter Facilities	Preferred Units	English			
		Metric			
	Table Setups	Pipe Table	Create/Edit Pipe	Enter From List	
			Delete Pipe	Enter From List	
		Sensor Type	Enter From List		
	Logger	Display Logger	Off/Line Wrap /		
	Control		No Line Wrap		
		Output Logger	Yes/No		
		Circular Memory	Yes/No		

Level A	Level B	Level C	Level D (see manual)	Level E	Level F
		Est LogTime Left	View Only		
		Clear Logger	Yes/No		
	Memory Control	Log Memory Left	View Only		
		Memory Map	Yes/No		
		Defragment	Yes/No		
	Analog Out Trim	Trim Io1	Operate / Trim @ 4mA		
		Trim Io2	Operate / Trim @ 4mA		
		Trim Vo1	Operate / Trim @ 2V		
		Trim Vo2	Operate / Trim @ 2V		
		Trim Pgen1	Operate / Trim @ 1kHz		
		Trim Pgen2	Operate / Trim @ 1kHz		
	RTD Calibrate	RTD1	Factory / User Cal		
		RTD2	Factory / User Cal		
	Clock Set	Date (MM.DD.YY)	Edit Date		
		Time (HH.MM)	Edit Time		
	RS-232 Setup	Baud Rate	Enter From List		
		Parity	Enter From List		
		Data Bits	7/8		
		Line Feed	Yes/No		
		Network ID	Numeric Entry		
		RTS Key Time	Enter From List		
	Backlight	Enter From List			
	System Info	Version	View Only		
		Reset Data/Time	View Only	mm.dd.yy.hh.mm.ss	
		Op System P/N	View Only		
		Checksum	View only		
		Code	View Only		
		System Time	View Only	mm.dd.yy.hh.mm.ss	
anguage	Enter From List				

Functions

7.1 UniMass Table

Some SITRANS F 1010 family flow meters provide a feature called UniMass. These flow meters support a UniMass Table which associates the metered liquid's current temperature and sonic velocity (Vs) with its specific gravity and viscosity. These variables are then used to provide mass metering and real-time flow profile compensation based on Reynolds numbers.

Note

For hydrocarbon liquids requiring standard volume compensation, an FUH1010 Standard Volume flow meter should be specified.

The table scanning routine can function with a minimum of two completely defined data points (e.g. Temperature and Specific Gravity). UniMass will not project viscosity and specific gravity measurements beyond the entered limits of the table but rather keep the highest or lowest table entry as its output.

Building the UniMass Table

The table is built by inputting a series of data points-two inputs and two outputs each:

- Input data consists of sonic velocity (Vs) and temperature.
- Output data consists of specific gravity (S.G.) and viscosity (cS) at the specified Vs and temperature.

UniMass Table Operation

The UniMass Table is designed to operate with individual families of liquids.

Although the UniMass Table is designed for variable temperature and sonic velocity, Constant Vs or Constant Temp table editing capabilities are provided as well.

Application Data Menu Definitions for UniMass Table

The UniMass Table resides within the [Application Data] menu. Refer to Programming the Transmitter (Page 49) for Installation Menu details.

[UniMass Table] - From the [Application Data] menu, press the <Right Arrow> to access the UniMass data point editor.

7.1 UniMass Table

Siemens 4 Channel [1] 1 Review /Edit UniMass Table			
Liquid Class UniMass Table Temp. Range Pipe Config	Changing T & Vs *Disabled Constant Temp Constant Vs		
Anomaly Diams Application Data	10		

[Disable] - Press the <Right Arrow> to access tables and enable UniMass routine.

The currently active table will be shown highlighted next to the [UniMass Table] menu cell. If no table is active then [Disable] will appear highlighted next to the [UniMass Table] menu cell.

[Constant Temp]

Press the <Right Arrow> to access.

The [Constant Temp] UniMass Table can be used for liquid applications with tightly controlled constant temperature or single liquid applications with varying temperature (ideal if temperature is not measured). This function simply associates changes in liquid sound velocity with changing S.G. and Viscosity.

• Create/Edit Table Point [New Point + Points List (1-32)]

You may Create or Edit up to 32 points. If you need support for multiple liquid classes, you may create additional identical flow sensing sites to accommodate them, altering only the UniMass Table entries. Then each site may be called up as needed for each liquid.

• Vs [Vs Value]

This is the sound velocity of a liquid. In the UniMass table this entry must correlate with a given temperature.

• S.G. [Specific Gravity]

This is the specific gravity of the process liquid at the Vs and Temperature for this table entry. The specific gravity is defined as the density of the sample divided by the density of water at $20^{\circ}C$ (68°F).

• Viscosity [Liquid Viscosity (cS)]

This is the viscosity of the process liquid in centistoke units at the Vs and Temperature for this table entry.

• Clear Table [Yes/No]

Use this item to remove all table points. You will need to re-enter all table data if you answer [Yes] to this menu item.

• Table Active [Yes/No]

Use this item to tell the flow meter whether to use the UniMass Table.

[Constant Vs]

Press the <Right Arrow> to access.

The [Constant Vs] UniMass Table can be used for single liquid applications where temperature is not constant but measured directly by the flow meter.

• Create/Edit Table Point [New Point + Points List (1-32)]

You may Create or Edit up to 32 points. If you need support for multiple liquid classes, you may create additional identical flow sensing sites to accommodate them, altering only the UniMass Table entries. Then each site may be called up as needed for each liquid.

• Temperature F or C [Temp Value]

This is the temperature of a liquid. In the UniMass table this entry must correlate with a given Vs (sound velocity).

• S.G. [Specific Gravity]

This is the specific gravity of the process liquid at the Vs and Temperature for this table entry. The specific gravity is defined as the density of the sample divided by the density of water at $20^{\circ}C$ (68°F).

• Viscosity [Liquid Viscosity (cS)]

This is the viscosity of the process liquid in centistoke units at the Vs and Temperature for this table entry.

• Clear Table [Yes/No]

Use this item to remove all table points. You will need to re-enter all table data if you answer [Yes] to this menu item.

• Table Active [Yes/No]

Use this item to tell the flow meter whether to use the UniMass Table.

Standard Data Entry Method

Use the following standard data entry methods for Constant Vs and Constant Temperature.

Note

UniMass will not project viscosity and specific gravity measurements beyond the entered limits of the table but rather keep the highest or lowest table entry as its output.

Functions

7.1 UniMass Table

Creating a Constant Temperature UniMass Table

To enter data for a Constant Temperature UniMass table:

- 1. From the [Application Data] menu, scroll down to [UniMass Table].
- 2. Press the <Right Arrow> and scroll to select UniMass table type [Constant Temp].

Siemens	4 Channel [1]	1			
Review /Edit U	Review /Edit UniMass Table				
Liquid Class	Chan	ging T & Vs			
UniMass Table	e *Con	stant Temp			
Temp. Range	Cons	tant Vs			
Pipe Config	Disab	oled			
Anomaly Diam	is 10				
Application Data					

3. Press the <Right Arrow> and select [Create/Edit Table].

Siemens	4 Channel [1]	1	
Edit or add to	liquid table		
Create/Edit T	able		
Clear Table	No		
Table Active	No		
Constant Temp			

4. Press <Right Arrow> to highlight [Table Point].

	Channel [1] 1			
Select table point				
Table Point	New Point			
Vs	1429.6			
S.G.	0.0000			
Viscosity (cS)	0.0000			
Accept	Yes			
Create/Edit Table				

5. Scroll to [Vs] and input data. Press <ENTER>

Siemens	4 Channel [1]	1			
Enter liquid so	Enter liquid sonic velocity in m/s				
Table Point	New Po	oint			
Vs	1429.6				
S.G.	0.000				
Viscosity (cS)	0.000				
Accept	Yes				
Create/Edit Table					

- 6. Input data for [S.G]. and Viscosity (cS).
- 7. Scroll to [Accept] and press the <Right Arrow>.

Siemens	4 Channel [1]	1
Table Point Vs S.G.	New F 1429.6 0.770	
Viscosity (cS)		
Accept	>Yes Clear	Pt.
Create/Edit Ta	ble	

- 8. Select [Yes] and press <ENTER> to save data.
- 9. Press <Left Arrow>. Scroll to [Table Active] and press <Right Arrow>.

Siemens	4 Channel [1]	1
Activate curre	nt liquid table	
Create/Edit 1	able	
Clear Table	No	
Table Active	No	
	*Yes	
Constant Vs		

- 10.Select [Yes] and press <ENTER>.
- 11.Press <Left Arrow> to return to [Application Data] menu.

Functions

7.1 UniMass Table

Creating a Constant Vs UniMass Table

To enter data for a Constant Vs UniMass table:

- 1. From the [Application Data] menu, scroll down to [UniMass Table].
- 2. Press the <Right Arrow> and scroll to select UniMass table type [Constant Vs].

Siemens	4 Channel [1]	1			
Review /Edit U	Review /Edit UniMass Table				
Liquid Class	Chan	ging T & Vs			
UniMass Table	*Cons	stant Vs			
Temp. Range	Cons	tant Temp			
Pipe Config	Disab	oled			
Anomaly Diams	s 10				
Application Data					

3. Press the <Right Arrow> and select [Create/Edit Table].

Siemens	4 Channel [1]	1		
Edit or add to	liquid table			
Create/Edit T	able			
Clear Table	No			
Table Active	No			
Constant Temp				

4. Press <Right Arrow> to highlight [Table Point].

Siemens 4 Cha Select table point	innel [1] 1
Table PointTemperature FS.G.Viscosity (cS)Accept	New Point 120.0 0.0000 0.0000 Yes
Create/Edit Table	

5. Scroll to [Temperature F] and input data. Press <ENTER>

Siemens	4 Channel [1]	1		
Enter liquid Te	emperature			
Table Point	New Po	int		
Temperature	F 120.00			
S.G.	0.000			
Viscosity (cS)	0.000			
Accept	Yes			
Create/Edit Ta	lole			

- 6. Input data for [S.G]. and Viscosity (cS).
- 7. Scroll to [Accept] and press the <Right Arrow>.

Siemens 4	Channel [1]	1
Table Point	New Point	t
Temperature F	120.0	
S.G.	0.770	
Viscosity (cS)	1.33	
Accept	>Yes	
	Clear Pt.	
Create/Edit Table	e	

- 8. Select [Yes] and press <ENTER> to save data.
- 9. Press <Left Arrow>. Scroll to [Table Active] and press <Right Arrow>.

Siemens	4 Channel [1]	1	
Activate curr	Activate current liquid table		
Create/Edit	Table		
Clear Table	No		
Table Active	No		
	*Yes		
Constant Ter	np		

- 10.Select [Yes] and press <ENTER>.
- 11.Press <Left Arrow> to return to [Application Data] menu.

Alternate Data Entry Method (Constant Vs or Constant Temp)

The data table can also be input via the flow meter's serial port. To accomplish this, the flow meter must be in Direct Command Mode (not Menu Mode or Data Display Mode). You can recognize this mode by noting that the flow meter responds to a <CR> input with a [? for menu] prompt. The flow meter will accept a text file of the correct format into the UniMass table data structure directly.

7.1 UniMass Table

An example of the format for a four point Constant Temp data file is as follows:

MTABLE 1 4

1510.0 30.0 1.1 2.7

1520.0 40.0 1.5 3.4

1530.0 50.0 1.9 5.5

1540.0 60.0 2.2 6.8

MTABLE is the special keyword indicating that UniMass data follows.

1 stands for the channel number where the data is being installed and 4 indicates the number of lines (data points).

Note

The last number must match the number of lines or else the table will not be formatted correctly.

Each line corresponds to a point. Sonic velocity is first, followed by temperature (these are the input variables). Then specific gravity is second followed by viscosity (these are the output variables). Do not use commas between the items, only single spaces. A carriage return is expected after each line, EXCEPT for the last line.

For example, line 1 of MTABLE 1 4 (1510.0 30.0 1.1 2.7) shown above is read as follows:

1510.0 (Sonic Velocity) 30.0 (Temperature) 1.1 (Specific Gravity) 2.7 (Viscosity)

You may save this file by using a name suggested by the liquid in question. Once the file is saved use HyperTerminal to send it as a simple text file to the PC serial port of the flow meter. It is suggested that a moderate data rate be used (e.g. 1200 baud) for this function since the flow meter is fairly busy computing and interpolating during the installation of the table.

[Changing Temp & Vs] - Press the <Right Arrow> to access.

The [Changing Temp & Vs] lookup table must be serially loaded using the HyperTerminal [Send Text File] command. This table can be generated using a utility provided by Siemens, which converts the Vs and temperature data into a uniform 10x10 grid array and formats it appropriately for serial upload.

Below is a sample input data file for gasoline and diesel fuel that was derived from sound velocity data obtained using a flow meter installed on a fuel pipeline. The task of obtaining sound velocity, as a function of density and temperature, can also be performed in a laboratory environment under conditions of controlled temperature and liquid properties.

Gasoline and Diesel fuel UniMass input file

The four comma separated columns within the data should be formatted in the following order and with the units indicated. The file must be created in a text editor as a .txt file (e.g. using MicroSoft Word Pad).

START				
-40,	1625,	0.8838,	92.4	
-20,	1579,	0.8762	53	
0,	1533,	0.8685,	26	
20,	1487,	0.8608,	16	
40,	1441,	0.8530,	9.7	
-40,	1445,	0.7755,	1.362	
-20,	1393,	0.7658,	1.022	
0,	1341,	0.7560,	0.83	
20,	1289,	0.7460,	0.72	
40,	1237,	0.7360,	0.64	
END				
•				
Ţ		Å	4	
(1)	(2)	(3)	(4)	
1	Terr	perature	/ Degre	e C or F
2	Sound Velocity (Vs) / meters/second			
3	Specific Gravity (relative to water @ 20°C (68°F)			
4	Viscosity (kinematic) / Centistokes			

The file must be in the form shown in the example above, with a START and END keyword to denote the limits of the data. The data does not have to be sorted in any particular order. A description of the data can be included at the top of the file since this will be ignored by the 10x10 grid generating program.

Once the input data is properly formatted it can then be processed using the PC based UniMass grid generating program. Follow the instructions included with this program to generate the final grid data, which can be directly uploaded to the flow meter using the HyperTerminal [Send Text File] command.

Uploading the UniMass Table

To properly upload and direct the UniMass table to the appropriate flow meter channel, follow the instructions below.

1. Open the sample file from the CD or create a new UniMass table.

START			
75,	1490,	0.88,	90
68,	1482,	0.78,	45
50,	1468,	0.68,	10
40,	1458,	0.58,	1.0
30,	1376,	0.38,	1.0
20,	1355,	0.28,	1.0
END			

Figure 7-1 Sample File

 Substitute your actual parameters for the parameters in the [UNimass ex table.txt] file shown above. Add or remove as many rows as is necessary to reflect your actual process. 7.1 UniMass Table

- 3. Double-click on [UniMass.exe]. Select [Deg F] or [Deg C].
- 4. Click [Browse].

🖷, UniMass	-D×
About	
UniMass	
Input File:	
Browse	
Output File: © Deg F C Deg C	
Process	

5. Select [UniMass ex table.txt] text table with your parameter changes in it. Click [Open].

it Filename		0			1
Look jn: My Recent Documents Desktop	Package UNIMass VI UNIMass ex UNIMass ex Unimout.txt		-		
y Documents	File <u>n</u> ame: Files of type:	UNimass ex table.txt Text Files (*.txt)		2	<u>O</u> pen Cance
My Network Places	Files of type.	Open as read-only			

6. Click [Process].

🗣 UniMass	
About	
UniMass	
Input File:	
N:\TSG\UniMassV10\UNimass ex tabl	
Output File: CDeg F	
N:\TSG\UniMassV10\unimout.txt	
Process	
	-

7. Click [OK].

[unimout.txt - Notepad				
File Edit Format View Help				
cv enal About				
cv enal UniMass				
CV enal Input File:				
CV enal N:\TSG\UniMassV10\UNimass ex tabl Browse				
cv enal				
CV enal Output File: C Deg C				
CV VS_(Process Done				
CV Sg_(50,1468,0.68,10				
CV SG_(40,1458,0.58,1.0 30,1376,0.38,1.0				
CV SQ_(28,1355,8.28,1.8				
CV Sg_(Grid Generation: 100% UniMass table generated to file -> N:\TSG\UniMassU10\unim				
CV Sg_(ut.txt				
cv sg_(
CV sg_gria[70] 0.4404, 0.4840, 0.5270,				

8. Open HyperTerminal.

Note

Refer to the HyperTerminal (Page 202) setup procedure, if necessary

- 9. In HyperTerminal, select the desired channel for the UniMass table upload.
 - For Channel 1 of a Dual Channel system, type: cv 0
 - For Channel 2 of a Dual Channel system, type: cv 1
 - For a Dual Path system, type: cv 2
 - For a Quad Path system, type: cv 3

10.Select the HyperTerminal [Transfer] menu and scroll to the [Send Text File] command.

7.2 Selecting Flow Units

11. Click on [Send Text File], select the file called [unimout.txt] and upload that file.

1010 - HyperTerm	ninal			_ [[] ×
File Edit View Cell				
	Send File			
12	Capture Text			
?	Send Text File			
1	Capture to Prinker			
INFO	LOGGER	REPORT	SITE	
RECALL	SAVE	CLRTOT	NOTOT EMPTY	
DAMPING	VS	MAKEUP	MENU	
ECHO	VS LF	ZERO	MTABLE	
				-
Sends a text file to the re	emote system			

12. This is the sonic velocity that the meter measures when a liquid of known specific gravity and viscosity are in the pipe at the appropriate temperature.

7.2 Selecting Flow Units

Flow Units

The [Flow/Total Units] menu is available after selecting a meter type and measurement channel. Use the [Flow/Total Units] menu to select volumetric flow units and an associated time base for the flow rate and total outputs. After making your selections, a view-only menu cell shows the resultant scaling. Another menu cell lets you adjust the output resolution by selecting a display range.

Selecting Flow Volume Units

The [Flow Vol. Units] option list allows you to select the rate units the flow meter uses to report volumetric or mass flow. If you select mass units, the flow meter uses the specific gravity parameter to convert volumetric flow to mass flow. The default in English Units for liquid is [Gallons].

To select a Volumetric or Mass unit:

- 1. Press the <MENU> key and [Meter Type] will be highlighted.
- 2. Press the <Right Arrow> to [2 Channel Flow] and then press <ENTER>.
- 3. The [2 Channel Flow] menu with appear with [Channel Setup] menu item highlighted.

4. Scroll down to the [Flow/Total Units] menu and press the <Right Arrow> to select the [Flow Vol. Units] menu.

Siemens	2 Channel [1]	ABC
Choose Rate an	d Totalizer Units	
Channel Setup		
Pipe Data		
Application Data		
Install Sensor		
Operation Adjust	t	
Flow/Total Units		
Span/Set/Cal		
Display Setup		
Logger Setup		
I/O Data Control		
Diagnostic Data		
Flow/Total Units		
Flow, Total Offits		

5. Press the <Right Arrow> to select the option list and use the <Up/Down Arrows> to select the desired units.

Siemens	2 Channel [1] ABC
Flow Volume Un	its
Flow Vol. Units	Gallons (US)
Flow Time Units	MIN
Flow Disp. Rang	e Autorange
Flow Disp. Scale	GAL/MIN
Total Vol. Units	Gallons (US)
Totalizer Scale	KGAL
Total Resolution	00000x00
Totalizer Mode	NETFLOW
Batch/Sample To	ot 0.000
Flow/Total Units	

6. Press <ENTER> to store selection.

Totalizer Modes

The Totalizer function operates in any of the modes listed below:

Mode	Flow Direction	Notes
POSFLOW	positive flow	Accumulates flow in positive direction only
NEGFLOW	negative flow	Accumulates flow in reverse direction only
NETFLOW	positive or negative flow	Adds to positive total; subtracts from reverse total

Table 7-1 Totalizer Modes

7.2 Selecting Flow Units

Note

NETFLOW (default) is best for applications where there may be zero flow for long periods. It minimizes false Totalizer register increments due to data scatter. Press the <Down Arrow> to accept the default setting.

Selecting Totalizer Modes

- 1. Press the <MENU> key and [Meter Type] will be highlighted.
- 2. Press the <Right Arrow> to [2 Channel Flow] and then press <ENTER>.
- 3. The [2 Channel Flow] menu with appear with [Channel Setup] menu item highlighted.
- 4. Scroll down to the [Totalizer Mode] menu and press the <Right Arrow> to select the Totalizer Mode option list.

Siemens	2 Channel [1] ABC
Choose positve, negative or net total	
Flow Vol. Units	Gallons (US)
Flow Time Units	MIN
Flow Disp. Rang	e Autorange
Flow Disp. Scale	GAL/MIN
Total Vol. Units	Gallons (US)
Totalizer Scale	KGAL
Total Resolution	NEGFLOW
Totalizer Mode	>NETFLOW
Batch/Sample To	ot POSFLOW
Flow/Total Units	

- 5. Press the <Up/Down Arrows> to select the desired mode.
- 6. Press <ENTER> to store selection.

Totalizer Mode Controls

From the RS-232 serial port all of the Totalizer commands listed below can be executed using PC keyboard function keys via VT100 terminal key emulation.

Note

Si-Ware or HyperTerminal should be in the Data Display mode when invoking the function keys referenced in the table below. Use the key sequence <Ctrl L> to display the Data Display mode.

Communications Setup

Connect the flow meter to your PC. Refer to Appendix A RS-232 Connection (Page 202), if needed.

- 1. Access Si-Ware or, if using a PC, access HyperTerminal from the PC [Programs] menu, then select [HyperTerminal].
- In [Connection Description] dialog box, enter a connection name (e.g. FUS1010). Click [OK].
- 3. In [Phone Number] dialog box, select [Direct to COM 1 (or COM 2)]. Click [OK] to select.
- 4. In [Properties] dialog box, enter RS-232 parameters. Click [OK].
- 5. At terminal screen, click [File]. Select [Properties].
- 6. Select [Settings] tab. At [Emulation] box, select [VT-100].
- 7. Select [ASCII Setup]. In [ASCII Sending] uncheck boxes. In [ASCII Receiving] check [Append line feeds to incoming line ends.]. Click [OK].
- 8. At the Terminal screen, press <ENTER> and the Data Display mode appears.
- 9. If not, to enter the Data Display mode type MENU and then press <Ctrl L>.

7.2 Selecting Flow Units

Key	PC #	Command	Description
F1 F2 F3 F4		CLRTOT (also clears overflow)	Resetting the Totalizer registers clears all total data accumulated during operation. Note: In Dual Path mode, the Totalizer operates only on the virtual system channel (Ch 3). Therefore in this case, the CLRTOT trigger would be <f3> <1>. Commands that can be invoked from Si-Ware or HyperTerminal: Terminal Command: CLRTOT 1.</f3>
F1 F2 F3 F4	2	NOTOT (Totalizer Freeze)	Invoking the NOTOT command disables the Totalizer. Totalization will not resume until you repeat the <fn> <2> key sequence. When you activate NOTOT, an N precedes the TOTAL symbol (i.e. [NTOTAL]) on the LCD Screen. Commands that can be invoked from Si-Ware or HyperTerminal: Terminal Command: NOTOT 1 = Stop Totalizer Terminal Command: NOTOT 1 = Start Totalizer</fn>
F1 F2 F3 F4	3	LAPTOT (Totalizer snapshot)	The LAPTOT command freezes the Totalizer screen display. However, the flow meter will continue to update its internal registers. The flow meter will show the current total when you repeat the <f1>< 3> key sequence. When you activate LAPTOT, an L precedes the TOTAL symbol (i.e., [LTOTAL]) on the HyperTerminal screen.</f1>
F1 F2 F3 F4	4	CLEAR (Batch/Tot register)	Clears the Batch/Sample Totalizer register. The flow meter maintains a separate Totalizer register for Batching or Sampling applications but cannot be accessed directly. It is used for relay control only. If you assign the system relay to this function, a momentary (200 ms) relay pulse occurs whenever the BATCHTOT register accumulates a specified liquid quantity. In the [Batch/Sample Tot] menu cell the required total flow volume is entered to activate the relay,. This numeric entry must reflect the selected flow total units. The [Totalizer Scale] menu cell shows the applicable flow total units. The sign of the Batch/Sample Total determines positive or negative accumulation.
F1 F2 F3 F4	5	CLEAR (Makeup Latch)	Clears the Makeup Latch. Refer to the Span Data menu [Set Alarm Levels] and then the [Makeup Latch] On / Off option.

Table 7-2 Totalizer Controls (the "n" in <Fn> = channel number)*

*Use the <F1> key as the "Lead-in command" for 4-Path Totalizer operations.

7.3 Zero Flow Adjust Menu

Zero Flow Compensation Methods

Unlike turbine flow meters ultrasonic transit-time flow meter provide active flow measurement right down to zero flow, however, the measurement of the transit-time delta is dependent on the similarity or "match" of the electronics, cables and ultrasonic sensors. Consequently some flow offset (or zero offset) may be present in any installation. To eliminate this residual zero offset Siemens has developed several different methods to insure proper zero flow compensation. The following paragraphs describe each method and when they should be used.

AutoZero

When the 1011HP sensors are mounted in the Reflect Mode configuration the AutoZero routine is automatically invoked at the end of the Initial Makeup. Flow does not have to be stopped to perform AutoZero since only the pipe wall signal is used in determining the zero offset and not the liquid component. The AutoZero routine performs a one-time analysis of the pipe wall component of the ultrasound signal to quantify any residual mismatch in the hardware. Once the AutoZero routine is complete, the system memorizes this measured zero offset and subtracts this value from the flow reading.

Actual Zero

The Actual Zero function simply averages the indicated "zero flow" readings (over a user defined time period) then stores this average value in memory. Under normal operation the indicated flow reading is zero compensated by simply subtracting this memorized value from the uncompensated flow reading. Actual Zero is the most positive method for zeroing the system; however, flow must be stopped with the line blocked (if possible) before invoking this function. If stopping flow is not possible then an alternate zeroing method should be selected.

ReversaMatic

This routine involves swapping the Upstream and Downstream sensors on the pipe (while keeping the cables attached) such that the difference in the transit-time change represents the zero offset. The fixed zero offset value is stored in memory in the same manner as described in Actual Zero. This routine would generally be used whenever flow cannot be stopped and the sensors cannot be mounted in the Reflect Mode configuration. Flow must be stable during the entire process.

7.3 Zero Flow Adjust Menu

ZeroMatic

When ZeroMatic is invoked the flow meter first performs the same analysis as described above in the AutoZero routine. However, after this analysis is complete the flow meter continues to interrogate the pipe wall signal and update the zero offset value under normal operation, such that the flow meter dynamically compensates for changing conditions which would normally result in zero drift. ZeroMatic will only operate with the sensors mounted in the Reflect Mode configuration and is recommended for applications which experience large temperature extremes.

Note

Invoking ZeroMatic will clear any existing "fixed" or memorized zero offset. If any zero offset remains after flow is stopped, an Actual Zero can be performed without interrupting ZeroMatic operation. To disable ZeroMatic, invoke it again, but then press <Left Arrow> to abort the installation.

Note

The ZeroClr command only resets the memorized zero offset registers not those set when the AutoZero routine is invoked.

Using Actual Zero

Note

Flow must be stopped with the line blocked (if possible) before invoking this function.

To invoke Actual Zero:

- 1. Access the [Zero Flow Adjust] option list by pressing <Right Arrow>.
- 2. Press <ENTER>. A pop-up window prompts you to set the current flow rate (in selected rate units) to equal zero (0.000).

Note

If a flow offset is desired (i.e., to test analog outputs) then press <Right Arrow> to enable numeric entry.

3. Press <ENTER> to start the Actual Zero process.

When you send the command, the flow meter analyzes the current flow rate for up to sixty seconds, integrating (averaging) the data for the best zero correlation. During this time, the menu prompt at the top of the display screen shows a timer that counts from zero to sixty. You can allow zero averaging for the entire period, or cancel the process at any time by pressing the <ENTER> key. This controls the amount of data the flow meter averages to obtain a zero level.

Using ReversaMatic

If site conditions do not permit stopping the flow rate at the mounting location, and you do not know the current flow rate, then you can use the ReversaMatic routine to establish the zero flow level. You should perform the ReversaMatic procedure as quickly as possible to ensure that the flow rate remains constant throughout the procedure.

To invoke ReversaMatic:

- 1. To access the [Zero Flow Adjust] option list press <Right Arrow>.
- 2. Move the cursor to [ReversaMatic]. Press <ENTER> to invoke the routine.
- The flow meter begins to measure the positive flow rate. "Positive" flow refers to flow moving from upstream sensor location to the downstream sensor location. Note top prompt line shows: Reversamatic Action
- 4. Upon completion, the flow meter beeps and the display screen shows: Reverse Sensors / Press <ENTER>
- 5. Now remove then remount the upstream and downstream sensors in their reversed positions. Mount the Up sensor (without removing its cable) in the Down sensor/cable location. Mount Down sensor with its cable in the Up sensor/cable location. When remounting the sensors, couple them to the pipe properly. Press <ENTER> (after re-installing the sensor).
- 6. The flow meter measures the negative flow rate briefly, then beeps and repeats the prompt: **Reverse Sensors / Press <ENTER>**
- Now remount the sensors for normal operation (in their original orientation). When remounting sensors, couple them to the pipe properly. Press <ENTER> (after re-installing the sensors).

This completes the ReversaMatic procedure. The system's zero accuracy will be very close to that obtainable using the Actual Zero method, providing flow remained constant during this procedure.

NOTICE

Preventing Flow Mis-Registration

A caution on the use of upper and lower flow limits (used to prevent flow mis-registration) prior to using the Reversal Zero technique (ReversaMatic): If the negative flow rate that the flow meter reads in the step during which the sensors are reversed is more negative than the lower flow limit, the meter will re-register positive and the Reversal Zero cycle will thus be corrupted.

Therefore, postpone the installation of upper and lower flow limits until the reversal zero procedure is executed successfully. For pipes that combine large diameters with very high flow velocities, it may be necessary to move the upper and lower flow limits out of the way until the reversal zero is completed. Moreover, pipes of this size frequently have excellent intrinsic zero performance and may not even need zeroing.

7.3 Zero Flow Adjust Menu

ZeroMatic (optional function)

Note

ZeroMatic is used in the Reflect Mode only. Invoking ZeroMatic clears any existing fixed zero offset.

Use this menu cell to select the ZeroMatic option. If conditions permit the use of the Auto Zero function then the ZeroMatic option can be used as well.

To select and enable the ZeroMatic option:

- 1. In the [Install Sensor] menu, press <Up Arrow> to scroll to the [Zero Flow Adjust] menu cell.
- 2. To access the [Zero Flow Adjust] option list press <Right Arrow>.

Note

If ZeroMatic is not running, the [Actual Zero] menu item will be displayed next to the [Zero Flow Adjust] menu cell.

3. Select the [ZeroMatic] menu cell by pressing <Up/Down Arrow> then press <ENTER>.

When the Initial Makeup of ZeroMatic is complete the screen will return to the [Install Sensor] menu and automatically highlight [Operation Adjust], which is the next menu cell.

To disable the ZeroMatic function:

- 1. Select the [Install Sensor] menu cell from the [Dual Path Flow] menu.
- 2. Scroll down to the [Zero Flow Adjust] menu cell by pressing <Up/Down Arrow>.

Note

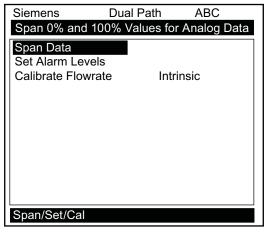
The highlighted [ZeroMatic] menu item is the only indication that ZeroMatic is functioning.

- 3. Invoke the ZeroMatic initial makeup procedure as previously described above.
- 4. While ZeroMatic initial makeup is running, press <Left Arrow> to abort the process thereby disabling the function.
- 5. The screen will return to the [Dual Path Flow] menu and highlight the [Operation Adjust] menu cell.

7.4 Span Data

The [Span Data] menu allows you to set 0% and 100% output limits for volumetric flow (Vfo), absolute flow (Vfab) and sonic velocity (Vs). Each menu cell shows appropriate rate units and time base. If you change flow rate units after spanning the system, the computer automatically updates the output data setup to reflect the change. Span limits apply to both the analog outputs and the on-screen strip chart. The flow outputs operate as follows:

Vfo Spanned Volumetric::	The minimum and maximum flow rate entries establish the Vfo span. The Max Flow menu cell sets 100% of span. The Min Flow menu cell sets 0% of span. Use signed numbers for bi- directional spanning. Note that negative (reverse) flow always is lower than positive flow, whatever its absolute magnitude. For example, for a flow measurement range of -30 GPM to +10 GPM, the 4mA span will be -30 GPM, and the 20mA span will be +10 GPM.
Vfab <i>Spanned Absolute Volumetric Flow Rate:</i>	Vfab is the absolute magnitude of the volumetric flow rate (Vfo). There are no menu cells provided to span this output. Vfab shares the Vfo span entries. The Vfab minimum span is always zero. The maximum span for Vfab is the largest absolute value of either the min. or the max. flow rate (Vfo) entries. For example, a span between +10 GPM and -30 GPM, spans the Vfab output from 0 GPM to 30 GPM.
Vs Spanned liquid sonic Velocity:	Vs is the sonic velocity in meters-per-second (m/s) of the flowing liquid. The min. and max. Vs entries establish the Vs span. Max Vs (m/s) defines 100% of span. The Min Vs (m/s) defines 0% of span.


Maximum span values represent:	Minimum span values represent:
100% of span	0% of span
Current output of 20mA	Current output of 4mA
Voltage output of 10 VDC	Voltage output of 0 VDC
Pulse output of 5000 Hz	Pulse output of 0 Hz

```
Functions
```

7.4 Span Data

To change the default Span Data settings:

- 1. At [Meter Type], press <Right Arrow> to [Dual Path Flow] and press <ENTER>.
- 2. Scroll to [Span/Set/Cal] and press <Right Arrow>.
- 3. Highlight [Span Data] and press the <Right Arrow>.

- 4. Highlight [Max Flow] and press <Right Arrow> to. Input 100% flow rate numeric data for 20mA. Press <ENTER> to store data.
- Scroll down to [Min Flow].Press <Right Arrow> to input 0% flow rate numeric data for 4mA. Press <ENTER> to store data.

Siemens Dual Set 100% <20mA> flor	Path w rate	ABC	
Max Flow GAL/MIN Min Flow GAL/MIN Max Vs M/S Min Vs M/S	=0.00 0.00 2000 1000		
Span Data			ĺ

① Input numeric flow data here

7.5 Analog Out Setup

The flow meter provides current, voltage and pulse-rate analog outputs. The [Analog Out Setup] menu allows you to assign data functions for these signals. The transmitter terminal strip contains the analog output terminals.

Table 7- 3	Analog Outputs
------------	----------------

lo (Isolated Current)	4 to 20mA varies in proportion to an assigned data function.
Vo (DC Voltage	0 to 10 VDC varies in proportion to an assigned data function.
Pgen (TTL Logic)	0 to 5000 Hz varies in proportion to an assigned data function.

Table 7-4 Analog Out Setup Data Categories

Vfo	Spanned volumetric/mass flow
Vfab	Spanned unsigned flow magnitude
Vs	Spanned liquid sonic velocity
Valc	Receive signal amplitude
Vaer	Relative degree of liquid aeration/cavitation
Viscosity	System liquid viscosity
T1	Current liquid temperature.
lin1, lin2	Represents a re-transmit of the analog input signals (e.g. Pressure and Temp inputs can be transmitted on the 4/20mA output).
lin3, lin4	Same as lin1 and lin2 above but only available for operation in Multi-Path and Arithmetic modes.

Note

Refer to Appendix A (Page 181) for Analog output connections including connections multichannel meters.

```
Functions
```

7.5 Analog Out Setup

Io Output Functions

The lo analog output is a self-powered, isolated 4-20mA DC signal that varies linearly in relation to a selected data function.

4-20mA outputs also provide a fault indication by dropping to 2mA if assigned to flow rate and under fault conditions.

Avoid Power Loop

Connecting the lo current output to a power loop will damage the device and may result in injury to user.

Do not connect to a powered loop.

Assigning a function to the current output:

- 1. From the [Dual Path Flow] menu scroll to [I/O Data Control].
- 2. Press <Right Arrow] to highlight the [Analog Out Setup] menu.

Siemens	Dual Path [1]	Path 1
Assign Data	to Analog Outputs	
Analog Out S	etup	
Relay Setup		
Analog Inp S	etup	
I/O Data Con	trol	
10 Data Con		

- 3. Press <Right Arrow> twice to access the [lo1] option list.
- 4. Move the cursor to the desired data function by pressing <Up/Down Arrow>.

Siemens	Dual Path [1] Path 1			
Assign Data to the 4 to 20 mA output				
lo1	S Vfo			
lo2	S Vfab			
Vo1	S Vs			
Vo2	S Valc			
Pgen1	S Vaer			
Pgen2	1 Vfo			
	1 Vfab			
	1 Vs			
	1 Valc			
	1 Vaer			
	2 Vfo			
Analog Out Setup				

5. To store selection press <ENTER>.

Vo Output Functions

The Vo analog output is a 0-10 VDC signal that varies linearly in relation to a selected function.

Assigning a function to the voltage output:

- 1. From the [Analog Out Setup] menu, press <Right Arrow] to access the [Vo1] option list.
- 2. Move the cursor to the desired data function by pressing <Up/Down Arrow>.
- 3. To store selection press <ENTER>.

Pgen Output Functions

The Pgen analog output is a buffered TTL-compliant pulse rate signal that varies linearly from 0-5000 Hz in relation to a selected data function.

Assigning a function to the Pgen output:

- 1. From the [Analog Out Setup] menu, press <Right Arrow> to access the [Pgen] option list.
- 2. Move the cursor to the desired data function by pressing <Up/Down Arrow>.
- 3. To store selection press <ENTER>.

7.6 Analog Input Setup

7.6 Analog Input Setup

The optional Analog Input Setup function assigns an active analog input to a measurement channel/path. The flow meter provides four DC current input ports for single channel and Dual Channel units. The DC current input ranges from a zero level of 4mA to a full scale of 20mA. The [Analog Inp Setup] menu cell allows you to enable this port and then span it to any desired scaling.

For example, when using the analog input viscosity function the numeric variables might be spanned as follows: 4mA=1 (water) and 20mA=100 (more viscous liquid). This spanning configuration allows the flow meter to use this constant numerical change to improve calibration in real time.

The various flow meter models allow you to associate the analog input to active system variables such as specific gravity, viscosity and others (see table below).

Note

Refer to Appendix A (Page 181) or I/O Module markings for the locations of these inputs and wiring procedures.

I/O Data Control	Analog Inp Setup	lin1	Input	Off
				Aux
				S.G.
				cS
				cP
				PSIA
				BARA
				T1 Deg F
				T1Deg C
			4 mA	Numeric entry
			20 mA	Numeric entry
		lin2 / lin3 / lin4	See In1 option list	

Table 7- 5I/O Data Control Menu

The flow meter recognizes the first analog input variable that is assigned to any given parameter and ignores any subsequent input with the same assignment. For example, if lin1 and lin2 are both assigned to represent pressure (PSIA), the flow meter will only use the pressure input from lin1.

Setting the Analog Current Input

The DC current input port must be enabled first. From the [Analog Inp Setup] menu proceed as follows:

Siemens	Dual Path [1]	Path 1
Analog Input		
Analog Out S	Setup	
Relay Setup Analog Inp S	otup	
Analog Inp S	etup	
I/O Data Con	trol	

1. Access the [lin1] option list by pressing the <Right Arrow> twice.

Siemens	Dual Path [1] Path 1	
Enable & Span a	analog input current	
lin1	Off	
	>Aux	
	S.G.	
	cS	
	cP	
	PSIA	
	BARA	
	T1 Deg F	
	T1 Deg C	
Analog Inp Setup		

2. Move the cursor down to [Aux] by pressing the <Down Arrow> and then press <ENTER>. This enables the port to receive an input current. The cursor moves to [4 mA].

Siemens	Dual Path [1]	Path 1	
Assign Analo	Assign Analog Input Type		
Input	Aux		
4 mA	0.000		
20 mA	0.000		
lin1			

7.7 Expanded I/O Option

- 3. To enable numeric entry, press the <Right Arrow>. Type a numeric value corresponding to a 4mA input signal.
- 4. To store the data press <ENTER>. This moves the cursor to [20 mA].
- 5. To enable numeric entry, press the <Right Arrow>. Type the numeric value corresponding to a 20mA input signal.
- 6. To store the data, press <ENTER>.

7.7 Expanded I/O Option

Note

For SITRANS F 1010 systems equipped with 1010N-7 Expanded I/O Module only.

The 1010N-2 I/O Module and 1010N-7 Expanded I/O Module both provide current (Io1, Io2), voltage (Vo1 and Vo2) and pulse rate (Pgen 1 and Pgen 2) analog outputs. The Expanded I/O Module Option allows users to drive as many as four additional 4-20mA loop-powered instrumentation outputs. The following information is intended to be used with the I/O Data Control, Span Data and Analog Output Trim Menu information in the manual.

The SITRANS F 1010 flow meter provides an Analog Output Setup menu that allows the user to assign data functions for these output signals (refer to Analog Output Setup in the appropriate manual). In addition, refer to Installation Drawings 1010N-2-7 and 1010N-7-7 in the manual for additional connection information and terminal block numerical designators.

Note

All flow meters in the SITRANS F 1010 product family can accept the Expanded I/O Module except 4-Channel flow meters and compact units.

Siemens	Dual Path [1]	Path 1
Assign Data	to Analog Outputs	
Analog Out	Setup	
Relay Setup		
Analog Inp S	Setup	
I/O Data Cor	ntrol	

Note

Use the I/O Data Control menu to assign data functions to the analog outputs.

Expanded I/O Module Option

The Expanded I/O Module Option provides expanded Io analog outputs. It is implemented through the use of a 1010N-7 Expanded I/O Module occupying the same position as the 1010N-2 I/O Module. This option allows users to drive up to four additional 4-20mA loop-powered instrumentation outputs.

Note

The flow meter menu does not indicate that these supplementary outputs are present and available. The outputs, in addition to being loop-powered, are isolated from one another as well as the flow meter.

Expanded I/O Module Option Identification

To verify that your flow meter has the Expanded I/O Module Option installed check the following:

The designation **C** should be part of the flow meter MLFB part number.

For example: 7ME36003C...

1010N-2 I/O Module

The conventional 1010N-2 I/O module provides the following:

- Two self-powered, isolated 4-20mA current loops (signals lo1 and lo2) that are assignable and spannable by the user to many flow meter variables such as flow, sonic velocity, signal strength, etc. These self-powered outputs also provide an industry-standard fault indication by dropping to 2mA if assigned to flow rate and under fault conditions. Note that these outputs, though isolated from the system, are NOT isolated from each other.
- Two 0-10 VDC outputs (signals Vo1 and Vo2) that are also assignable and spannable by the user as above. These are also self-powered, but are not isolated from the system.
- Two 0-5000 Hz Pgen signals (Pgen1 and Pgen2) also assignable and spannable by the user. These are TTL level pulses.

The 1010N/DN class of flow meters has a total of six analog outputs as indicated above. In addition (refer to Installation Drawings 1010N-2-7 and 1010N-7-7):

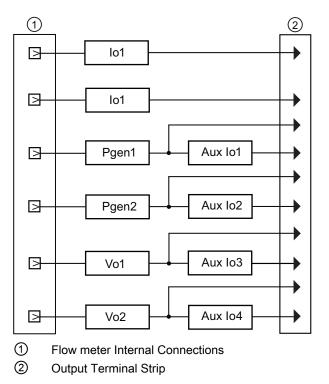
- Alarms/Status/Totalizer pulses are generally presented as relay closures as either Mercury Wetted Form 1A or Dry Reed Form C relays.
- Analog inputs, when provided, are in the form of 4-20mA non-isolated inputs.
- The meter also has four non-isolated Totalizer command lines providing Totalizer Clear and Totalizer Hold (NoTot) functionality.

7.7 Expanded I/O Option

1010N-7 Expanded I/O Module Option

The Expanded I/O Module Option provides all of the above plus the following outputs:

- The four signals that drive the pulse generator outputs (Pgen1 and Pgen2) and voltage outputs (Vo1 and Vo2) of the flow meter create four current outputs: Aux Io1, Aux Io2, Aux Io3 and Aux Io4 (see diagram).
- By spanning and assigning a system variable to 0-10 volt (Vo1 and Vo2) or 0-5000 Hz pulse output (Pgen1 and Pgen2) the module simultaneously outputs these signals to the Expanded I/O Module Option Aux outputs. For a 2-Channel flow meter the programming assignments are as follows:


 Table 7-6
 Typical 2-Channel Flow Meter Expanded I/O Option Connections

Channel	Signal	AUX lo	Meter Menu Display
CH1	Pgen1	lo1	Vo1
	Vo1	lo3	Pgen1
CH2	Pgen2	lo2	Vo1
	Vo2	lo4	Pgen1

Note

The four Aux lo outputs are externally powered.

Expanded I/O Module Option Programming

The diagram below illustrates the Expanded I/O Module Option programming for a Single Channel flow meter with a 1010N-7 Expanded I/O Module.

Note

The 1010N-7 Expanded I/O Module auxiliary output signals (Aux Io1 - Aux Io4) generated from Pgen1, Pgen2, Vo1 and Vo2 are "mirrored" output currents. For example, if Vo1 is a 5 VDC signal then Aux Io3 will be 12mA.

Note

The method used to create auxiliary current loops makes it impractical to generate the 2mA fault current produced by the primary 4-20mA outputs of the flow meter.

7.8 Logger Control

7.8 Logger Control

Logger Control Menu

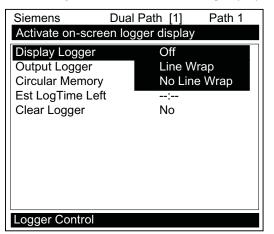
The Logger Control menu in the [Meter Facilities] menu provides the Logger controls for the flow meter measurement channels and paths. It allows the user to select data items/alarm events, a logging interval and a destination for Logger reports. While the Logger Setup menu is measurement channel/path specific, this Logger Control menu provides global control functions. This means that the settings made here apply to all measurement channels/paths, meter types, operating modes, etc. This is possible because the flow meter stores logged data in a single file.

The [Est LogTime Left] menu view-only menu cell shows an estimate of the hours and minutes of logging time remaining. For convenience sake, the Display Logger command is essentially a duplicate of the menu cell in Logger Setup. It sends Logger data to the graphic screen with or without line wrapping. The Output Logger command sends data to an external device via the RS-232 serial port. The Clear Logger command erases the entire Logger file.

- 1. From the Meter Facilities menu access the [Logger Control] menu by pressing the <Right Arrow>.
- 2. Scroll down to [Logger Control]. Press the <Right Arrow> to access the [Logger Control] menu option list.

Siemens	Dual Path [1] Path 1
Datalogger Cont	trol
Preferred Units	English
Table Setups	
Logger Control	
Memory Control	
Analog Out Trim	
RTD Calibrate	
Clock Set	06.23.09 12.46.56
RS-232 Setup	38400 Odd [0]
Backlight	On
System Info	
Meter Facilities	

Table 7-7 Logger Control Menu Option List


Logger Control	Display Logger	Off
		Line Wrap
		No Line Wrap
	Output Logger	No
		Yes
	Circular Memory (Available for	No
	Multi-Path units only)	Yes
	Est LogTime Left	:
	Clear Logger	No
		Yes

Display Logger

This menu cell allows you to send the Logger contents to the display screen. This command is effective only after a successful install. You can set the report to scroll on the screen with or without line-wrap. Selecting line wrap, forces a line feed after approximately 40 characters. In addition, you have to enable datalogging and then select items in the Logger Setup menu. Note that this command transmits the data from both channels/paths.

To send Logger contents to the display screen:

1. Press <Right Arrow> to access the [Display Logger] option list.

- 2. Scroll cursor to either [Line Wrap] or [No Line Wrap] by pressing <Up/Down Arrow>.
- 3. To view Logger contents press <ENTER>.
- 4. To return to [Logger Control] press <MENU>.

Output Logger

This menu cell allows you to send the Logger contents to an external device (usually a computer or printer) via the flow meter's RS-232 Serial I/O port. This command is effective only after a successful install. In addition, you have to enable datalogging and select data items in the [Logger Setup] menu.

The flow meter interfaces with most serial printers or personal computers for Logger printouts. You must use the proper cabling between the flow meter and the external device. In addition, you must configure the RS-232 Setup correctly. You should turn off the Logger function before you transmit an extensive printout. This will avoid contaminating the printout with new Logger data. Logger reports are sequential ASCII text files.

To send Logger contents to the RS-232 Serial Port:

- 1. Check the flow meter-to-external device connections and your RS-232 Setup parameters (see RS-232 Setup menu).
- 2. To access the [Output Logger] option list press <Right Arrow>.
- 3. Scroll the cursor to [Yes] by pressing <Up/Down Arrow>.

7.8 Logger Control

- 4. To transmit Logger contents to external device via the serial port press <ENTER>.
- 5. To stop printout press <Left Arrow>.

Circular Memory

In its default mode, the Logger collects data until its memory becomes full. At that time the flow meter suspends datalogging and cannot resume until the Logger memory is cleared (see Clear Logger command). Circular Memory allows the Logger to "'write over" its oldest records when memory reaches full capacity. If you enable [Circular Memory], you are assured of always collecting the most recent data. But also remember that you will lose the oldest Logger reports and that further invoking of [Circular Memory] deletes the current contents of the Logger.

To setup and enable Circular Memory:

- 1. The Logger Mode menu must have the [Memory] menu cell selected.
- 2. Logger items must be selected (e.g., Site ID, Date, Time, etc.).
- 3. All active channels/paths in the Channel Setup menu must be disabled. To disable active channels, select the [Channel Enable] menu cell and then [No].
- 4. In the Logger Control menu, select [Circular Memory].
- 5. Press <Right Arrow> to access the [Circular Memory] option list.
- 6. Move the cursor to [Yes] by pressing <Up/Down Arrow>.
- 7. To store selection press <ENTER>.
- 8. Lastly, re-enable the channels/paths that you disabled earlier to begin logging.

Est LogTime Left

Est LogTime Left is a "view-only" menu cell that shows an estimate of the amount of Logger time remaining in hours and minutes. This menu cell becomes active after you enable datalogging. Selecting [Circular Memory] and/or event-based datalogging (see Logger Setup), blanks the [Est LogTime Left] field and is based on the log interval and data selections made in the Logger Setup.

Clear Logger

If you use the Logger in its default mode, eventually you will use all the memory available for Logger storage. When this occurs, you will not be able to log more data until you free up the memory. The [Clear Logger] command erases ALL stored Logger data. Therefore, you should evaluate the currently stored data, and print any valuable information before using this command.

Note

Saved Sites also consume Logger RAM.

Clearing Logger Memory

- 1. To access the [Clear Logger] option list press <Right Arrow>.
- 2. Move the cursor to [Yes] by pressing <Up/Down Arrow>.
- 3. To clear the memory press <ENTER>.

7.9 Operation Adjust Menu Settings

Introduction

The [Operation Adjust] menu becomes available after picking a meter type and measurement channel. It is recommended that you use it after the sensors are installed and operating to "fine-tune" the meter's output characteristics.

Each application presents different data display and output requirements due to unique pipe and liquid conditions. Use the [Operation Adjust] menu to match flow meter operation to the site. You can set damping controls for the primary flow rate output. You can define a Deadband, (usually a very low flow rate), below which the flow output will be forced to zero. You can also select the flow meter response to a continuous Fault condition.

Damping Control

The flow meter provides two different data output filter types, Time Average and SmartSlew. Time Average (recommended) integrates the instantaneous flow rate over a selectable time period. Use the Time Average function when stability in flow reading is essential. A value entered (in seconds) sets the time it takes the flow meter to respond to a rate change. The default is 10 seconds. Enter any amount of time up to 60 seconds maximum.

SmartSlew performs data scatter damping during steady flow periods while maintaining the ability to respond to changing flow rates. SmartSlew values range from [1 to 9]. Pick a higher number to slow flow meter response to a rate change.

Setting the Time Average (default):

- 1. From the [Dual Path Flow] menu scroll to the [Operation Adjust] menu and press <Right Arrow>.
- 2. At the [Damping Control] menu press the <Right Arrow> and move the cursor down to [Time Average].
- 3. To enable Time Average entry press <Right Arrow>.

7.9 Operation Adjust Menu Settings

Siemens Di	al Path [1] Path 1	
Select SmartSlew	or TimeAvg Damp	
Damping Control	Time Average	
Deadband Contro	0.00	
Memory/Fault Se	t Memory	
Memory Delay <	> 120	
Or creation Adjust		
Operation Adjust		

- 4. Use the numeric keys to type the new Time Average setting.
- 5. To register the new value press <ENTER>.

Setting SmartSlew :

- 1. From the [Dual Path Flow] menu scroll to the [Operation Adjust] menu and press <Right Arrow>.
- 2. At the [Damping Control] menu press the <Right Arrow> and move the cursor down to [SmartSlew].
- 3. To access SmartSlew option list press <Right Arrow>.
- 4. Scroll the numeric list to the desired choice by pressing <Up/Down Arrow>.
- 5. To register the new value press <ENTER>.

Deadband Control

Use the Deadband Control to instruct the flow meter to report zero flow if the flow rate falls below a specified level (usually a very low rate). It will prevent the possibility of data scatter (a natural result of digital computation) from causing false Totalizer accumulation during long non-flowing periods. Inspect the actual data scatter during zero flow conditions to find the proper Deadband setting for your application.

To edit Deadband default setting (0.000):

- 1. From the [Dual Path Flow] menu scroll to the [Operation Adjust] menu and press <Right Arrow>.
- 2. Scroll to the [Deadband Control] menu
- 3. Press <Right Arrow>to enable numeric entry.
- 4. Use the numeric keys to type in the desired rate (using selected flow rate units).
- 5. To register the new value press <ENTER>.

Memory/Fault Set

Certain situations will interrupt data production (e.g., an empty pipe or excessive aeration). Use Memory/Fault Set to select the flow meter response to such an interruption. The Fault setting (default) will zero the flow rate output and declare an alarm on a flow display screen, Datalogger report and an assigned relay output.

For some applications, occasional temporary Fault conditions may be a normal part of the process and would not require an alarm response. The flow meter offers a Memory operating mode to support such an application. Memory Mode suspends the flow meter Fault response by preventing the flow outputs from dropping to zero for the interval specified in the Memory Delay menu cell. During the Memory duration, the flow meter will maintain the last valid flow reading measured before the onset of the fault condition. The default Memory Delay is 60 seconds. You may select any duration from 3 to 604,800 seconds (one week).

Selecting Memory Mode

- 1. From the [Dual Path Flow] menu scroll to the [Operation Adjust] menu and press <Right Arrow>.
- 2. Scroll to the [Memory/Fault Set] and press <Right Arrow> to access option list.
- 3. Move the cursor down to [Memory] by pressing <Up/Down Arrow>.
- 4. To make selection press <ENTER>.
- 5. This moves the highlight to [Memory Delay <s>].

Memory Delay (s)

Selecting [Memory Delay <s>] activates the suppressed [Memory Delay] menu cell. It allows you to specify the number of seconds that the flow meter maintains its last valid flow reading. When the memory delay expires, it triggers the fault alarm response described previously.

Setting Memory Delay

- 1. To enable numeric entry press <Right Arrow>.
- 2. Use the number keys to type the delay in seconds.
- 3. To register the new value press <ENTER>.

7.10 Setting Relays

7.10 Setting Relays

Relay Functions

Use the [Relay Setup] menu to assign a function to channel relays. The flow meter supports two types of relay outputs, Alarm Relay and Pulse Relay. Alarm Relay outputs operate in "fail-safe" mode. The relay(s) are energized under normal conditions - an alarm condition causes the relay(s) to de-energize until the alarm clears. The Pulse Relay output supports Totalizer and batch relay functions, with an output pulse width of approximately 200 ms; maximum activation rate is 2.5 pulses per sec. If Totalizer pulses exceed this rate, excess pulses are stored in an overflow register. This allows the relay to "catch up" when flow decreases enough.

Note

Using the <F1> key (Totalizer clear command) also clears all channel Totalizers plus the overflow register described in the last paragraph.

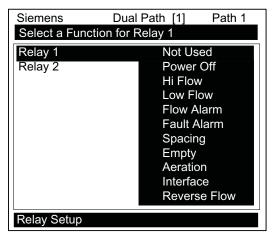
Relay 1 and 2 Function Assignments

The flow meter, depending upon the model, provides four alarm relays. Please refer to the Appendix A (Page 181) for wiring details. Relays respond to any of the alarm conditions or data functions included on the Relay Option List.

Not Used	Not Active
Not Used	NOLACIVE
Power Off	Power Off alarm occurs when power fails.
High Flow	Flow rate exceeds high flow set point.
Low Flow	Flow rate falls below low flow set point.
Flow Alarm	Flow rate exceeds or falls below flow set points.
Fault Alarm	System loses receive signal (all paths in fault).
Spacing	Sensor spacing needs adjusting.
Empty	Empty pipe alarm.
Aeration	Aeration percentage exceeds alarm set point.
Interface	Liquid interface setpoint exceeded.
Reverse Flow	Flow is in negative direction.
BatchTot	Batch/Sample total advances.
Pos Total	Positive total volume advances 1 digit.
Neg Total	Negative total volume advances 1 digit.
Fltwarn	System fault warning occurs when 1 or more paths are in fault (multi-path units only).
Soft Fault	Fault condition - memory mode active.

Table 7-8 Relay Option List

Note


```
For Multi-Path flow meters: "1" = Path 1, "2" = Path 2, "3" = Path 3, "4" = Path 4 and "S" represents the system or average path. These characters appear to the left of the option list parameter.
```

Assigning functions to Relay 1:

- 1. From the [Dual Path Flow] menu scroll down and highlight [I/O Data Control].
- 2. Press <Right Arrow> and scroll down to [Relay Setup].

Siemens	Dual Path [1]	Path 1	
Assign Alarm	Assign Alarm Data function to relays		
Analog Out Se	tup		
Relay Setup	•		
Analog Inp Set	tup		
I/O Data Contr	ol		

- 3. To access the [Relay Setup] option list press <Right Arrow>.
- 4. Move the cursor to the desired Relay assignment by pressing the <Up/Down Arrow>.

5. To store selection press <ENTER>. Repeat procedure for all other relays.

7.11 Memory Control

7.11 Memory Control

Introduction

Memory Control is a reference menu that shows the amount of bytes of data memory left. The data memory capacity depends on the number and complexity of the site setups stored in memory and the size of the current Datalogger file.

The [Memory Control] menu is located in the [Meter Facilities] menu.

Table 7-9Memory Control Menu

Log Memory Left→	XXXXXXX
Memory Map→	No
	Yes
Defragment→	No
	Yes

Log Memory Left

This view only menu cell shows the minimum remaining number of characters available for Datalogger and site storage. When the Datalogger is enabled for circular mode, the meter allocates all memory left except for two conventional empty sites required for Datalogger use.

To view the amount of data memory bytes available press <Right Arrow>.

Memory Map

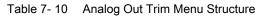
Selecting [YES] for this item enables a snapshot display of current memory usage. In this display, the asterisk indicates a used memory block, a space indicates a free block, while a dash character indicates unused filler.

Defragment

Selecting [YES] for this item consolidates memory data blocks into contiguous storage; collapsing the filler regions. You may be able to use an additional block for site or Datalogger storage as a result. Use this command if you seem to be out of memory even though the [Log Memory Left] item indicates free capacity.

7.12 Analog Output Trim

Introduction


Analog Out Trim function allows you to fine-tune the flow meter's analog voltage and current outputs using an ammeter connected to the output under test. In addition, you can use a frequency counter to fine-tune the flow meter's pulse rate output.

Note

The current, voltage, and Pgen trimming will be limited by the 12-bit resolution of the flow meter's D/A Convertor (DAC).

- 1. From the [Meter Facilities] menu, scroll to the [Analog Out Trim] menu.
- 2. Press the <Right Arrow> to access the option list.

Siemens	Dual Path [1] Path 1	
Analog Output T	rim	
Preferred Units Table Setups Logger Control Memory Control	English	
Analog Out Trim		
RTD Calibrate Clock Set RS-232 Setup Backlight System Info	06.25.09 10.52.49 9600 None 8 [0] On	,
Meter Facilities		

Analog Out Trim	lo1 / lo2	Operate
		Trim@4mA Indicated mA=x.xx
	Vo1 / Vo2	Operate
		Trim@2V Indicated V=x.xx
	Pgen1 / Pgen2	Operate
		Trim@1kHz Indicated Hz=x.xx

Functions

7.12 Analog Output Trim

Current Output Trim (Io1 & Io2)

Note

Can be trimmed to within .005mA of nominal.

To calibrate a current output:

- 1. Set up an ammeter to read Amps, then connect it to the supply and return terminals of the current output under test.
- 2. Move the highlight to the port to be tested by pressing the <Up/Down Arrow>. Press the <Right Arrow> and then press the <Down Arrow> to move the cursor to [Trim @ 4mA].

Siemens	Dual Path [1]	Path 1
Trim 4-20 mA o	utput	
Trim Io1	>Operate	
Trim Io2	Trim @ 4mA	
Trim Vo1	Operate	
Trim Vo2	Operate	
Trim Pgen1	Operate	
Trim Pgen2	Operate	
Analog Out Trip		
Analog Out Trim		

- 3. Press <ENTER>. This triggers a 4.00mA pop-up window. The ammeter should now be reading 4.00mA.
- 4. If the ammeter reading does not match, use the numeric keys to type in the current reading.
- 5. Press <ENTER> to register setting. This adjusts the flow meter's DAC (digital-to-analog converter) so that a 4mA output corresponds with 4mA on the ammeter.
- 6. Re-check the ammeter to make sure that it is now reading 4mA.

Voltage Output Trim (Vo1 & Vo2)

Note

Can be trimmed to within .0025 V of nominal.

To calibrate a voltage output:

- 1. Set up a multimeter to read volts, then connect it to the supply and return terminals of the voltage output under test.
- 2. Move the highlight to the port to be tested by pressing the <Up/Down Arrow>. Then press the<Right Arrow> and then press <Down Arrow> to move the cursor to [Trim @ 2V].

Siemens	Dual Path [1]	Path 1
Trim 0-10 Volt o	utput	
Trim Io1	Operate	
Trim lo2	Operate	
Trim Vo1	>Operate	
Trim Vo2	Trim @ 2V	
Trim Pgen1	Operate	.
Trim Pgen2	Operate	
Analog Out Trim		
Analog Out Trim		

- 3. Press <ENTER>. This triggers a 2.00 Volts pop-up window. The multimeter should now be reading 2.00 Volts.
- 4. If the multimeter reading does not match, use the numeric keys to type in the voltage reading.
- 5. Press <ENTER> to register setting. This adjusts the flow meter's DAC (digital-to-analog converter) so that a 2.00 Volts output corresponds with 2.00 Volts on the multimeter.
- 6. Re-check the multimeter to make sure that it is now reading 2.00 Volts.

7.12 Analog Output Trim

Pgen Output Trim (Pgen1 & Pgen2)

Note

Can be trimmed to within 1.25 Hz of nominal.

To calibrate a pulse rate output (Pgen1 or Pgen2):

- 1. Connect a frequency counter to the supply and return terminals of the pulse rate output under test.
- 2. In the [Analog Out Trim] menu move the highlight to the port to be tested by pressing the <Up/Down Arrow>. Then press the<Right Arrow> and then press <Down Arrow> to move the cursor to [Trim @ 1 kHz].

Siemens	Dual Path [1]	Path 1
Trim 0 to 5 kHz	output	
Trim Io1	Operate	
Trim Io2	Operate	
Trim Vo1	Operate	
Trim Vo2	Operate	
Trim Pgen1	>Operate	
Trim Pgen2	Trim @ 1 kHz	
Analog Out Trim		

- 3. Press <ENTER>. This triggers a 1 kHz pop-up window. The frequency counter should now be reading 1 kHz.
- 4. If the frequency counter reading does not match, use the numeric keys to type in the frequency counter reading.
- 5. Press <ENTER> to register setting. This adjusts the flow meter's DAC (digital-to-analog converter) so that a 1 kHz output corresponds with 1 kHz on the frequency counter.
- 6. Re-check the frequency counter to make sure that it is now reading 1 kHz.

7.13 Resistive Temperature Device (RTD) Calibration

7.13 **Resistive Temperature Device (RTD) Calibration**

The [RTD Calibrate] menu appears on all SITRANS 1010 models. Use this menu to calibrate Temperature Sensors to an external standard. It is important to note that Siemens RTD temperature sensors are factory-calibrated for high accuracy. We recommend that before deciding to perform the calibration, check the current RTD reading in the [Diagnostics Data] menu. You may find that you do not need to calibrate the sensor. In any case, make sure that the temperature reading stabilizes before proceeding further. The [RTD Calibrate] menu allows you to perform an external calibration, which can be accomplished either by data entry of the current RTD temperature or by a 0°C (32°F) Ice-Bath procedure. You can switch between the intrinsic and external calibration modes at any time.

Note

If you perform an external temperature calibration, you should mark and record the location of each connector and sensor-cable. Once you have re-calibrated the temperature sensors, changing the sensor/connector orientation established during the procedure may void the calibration.

1. From the [Meter Facilities] menu scroll to the [RTD Calibrate] menu.

Siemens	Dual Path [1]	Path 1
Calibrate Tempe	rature Sensors	
Preferred Units Table Setups Logger Control Memory Control Analog Out Trim RTD Calibrate	English	
Clock Set RS-232 Setup Backlight System Info	06.25.09 9600 Nor On	10.52.49 ne 8 [0]

2 ht Arrow>.

Table 7-11 RTE	Calibrate Menu Structure
----------------	--------------------------

RTD Calibrate	RTD 1→	Factory
		User Cal
	RTD 2→	Factory
		User Cal

7.13 Resistive Temperature Device (RTD) Calibration

RTD Calibration by Entry Data

The [RTD Calibrate] menu allows you to adjust the intrinsic RTD reading to match an external reference thermometer by directly entering its reading. Only perform this procedure while the RTD under test is installed and currently measuring temperature.

To enter the current RTD temperature:

- 1. From the [RTD Calibrate] menu press <Right Arrow> to access the RTD option list.
- 2. Press <Right Arrow> to highlight the RTD you want to calibrate (RTD 1 or RTD 2).
- 3. Move the highlight to [Factory] or [User Cal] then press <ENTER>.

Siemens	Dual Path [1]	Path 1	
Pick Factory or User Cal for RTD			
RTD 1	Factory		
RTD 2	>User Cal		
RTD Calibrate			

4. This triggers the pop-up window:

Siemens	Dual Path [1]	Path 1
Pick Factory	or User Cal for RTD	
RTD 1	User Cal	
RTD 2	User Cal	
	Calib @ deg F	
	=32.0	
RTD Calibrate		

5. To enable numeric entry <Right Arrow>, then type in the reading of the reference thermometer (e.g., 72.0).

6. To recalibrate the RTD sensor <ENTER>. To verify the calibrated reading, go to the Dual Path Flow menu [Diagnostic Data/Liquid Data] menu to check the current RTD output. Make sure that it coincides with the reading of the reference thermometer. Repeat for the other RTD, if necessary.

Note

Factory Calibration provides an additional prompt after a new temperature is entered: [Are you Sure? No Yes]. It is recommended that you use [User Cal] to avoid alteration of preset factory calibration.

Ice Bath RTD Calibration

Use deionized water and ice mixture at 0°C (32°F) equilibrium for an ice bath. Ensure temperature with a reference thermometer. Siemens can not assume responsibility for the incorrect design, construction or operation of an Ice Bath.

NOTICE

Sensor Damage

If RTD sensor makes direct contact with ice during an ice bath calibration procedure the sensor may be damaged and the calibration results will be incorrect.

Do not allow an RTD sensor to make direct contact with ice during an ice bath calibration procedure.

To perform a 0°C (32°F) calibration:

- 1. Immerse RTD sensor in deionized water and ice mixture. Stir the mixture constantly.
- 2. In the [RTD Calibrate] menu move the highlight by pressing the <Up/Down Arrow> to the RTD you want to calibrate (RTD 1 or RTD 2).
- 3. To access the RTD option list press <the Right Arrow>. Move the highlight to [User Cal] then press <ENTER>. This triggers the pop-up window.
- After the RTD sensor reaches equilibrium at 0°C (32°F), press <ENTER> to recalibrate the RTD sensor.
- 5. To verify the calibrated reading, go to Dual Path Flow [Diagnostic Data/Liquid Data] menu to check the current RTD output. Make sure that it coincides with the reading of the reference thermometer. Repeat for the other RTD, if necessary.

7.14 Reflexor

7.14 Reflexor

Reflexor is one of the operating modes available on certain SITRANS F 1010 models. The Reflexor operating mode utilizes Doppler flow detection along with digital signal processing techniques to successfully measure flow under conditions that may not be suitable for transit-time flow measurement. The Reflexor samples the flow stream as it detects Doppler shift. It converts the Doppler shift information by use of Fast Fourier Transform (FFT) and filters the FFT to determine the flow rate. The Reflexor mode will operate with many of the same sensors that are used with transit-time flow measurement along with those which are specifically designed for Doppler flow measurement. Use of any other sensor than shown in these instructions may result in failure to measure or give an incorrect flow rate indication.

Typical Installation

The typical steps to complete the Reflexor installation procedure are as follows:

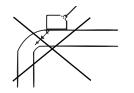
- 1. Collect the site data (pipe and liquid data, part numbers, etc.).
- 2. Choose a mounting location for the flow sensors.
- 3. Prepare the pipe for sensor's mounting.
- 4. Access the Installation Menu and create a site.
- 5. Enter the pipe parameters.
- 6. Mount flow sensors on pipe and connect to flow meter.
- 7. Invoke the sensor installation procedure.
- 8. Optimize installation through use of the Spectra Display and diagnostic data.

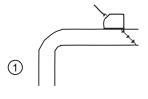
Almost all menu cells will contain default parameters and will not require any additional action. To obtain operation you will only need to access the menu cells for required parameters, such as pipe data. Obtaining accurate flow rate data will take less than five minutes.

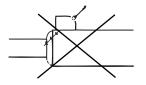
Application conditions may require you to mount the sensors using the adjacent mounting method as described and shown in this section.

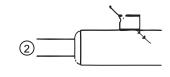
Selecting a Sensor Set

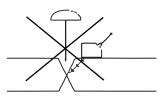
Maximum sensitivity will be obtained with use of the 191N1S sensor set.

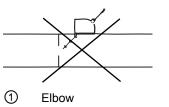

Alternative sensors recommended for use by Reflexor include:

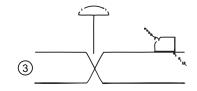

- 1011 Universal size C1, C2 and C3
- 1011 HP-T1 size B1H and A3H
- 1011 HP-T2 size B1H and A3H
- 1011 HP-T3 size B1H and A3H
- 991 Universal size 2 and 3A High and Very High Temperature versions
- 990 (991 Sensor)

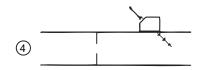

The sensor models are also available for submersible and extended temperature applications.


Selecting Sensor Mounting Location


Select a sensor mounting location that has a fully developed flow profile. Do not locate the sensor so that sonic energy enters a region that is not representative of the flow velocities at the measuring location. Use the figure below as a guide to select the proper mounting location.





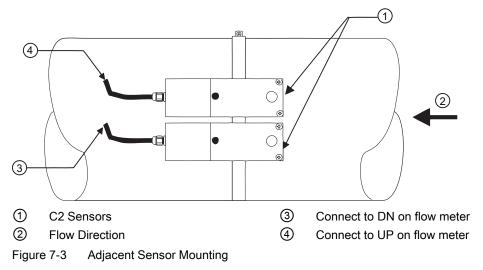


2 Expansion or Contraction

Figure 7-2 Sensor Mounting Examples

3 Valve

④ Orifice Plate


```
Functions
```

7.14 Reflexor

Mounting Sensors

Two mounting configurations are available in the Reflexor Mode:

- Adjacent mounting locates the two sensors alongside each other using a single mounting chain or strap.
- In-Line mounting locates the two sensors axially along the pipe using two mounting chains or straps.

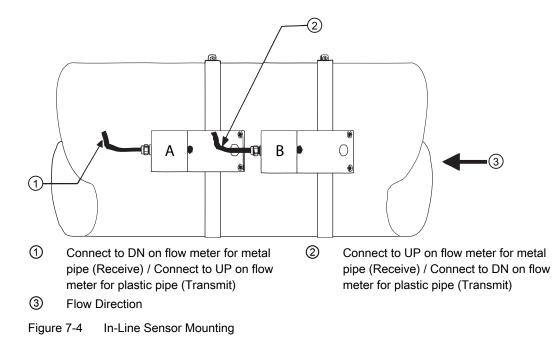

On inline mounted metal pipes the Receive Sensor is always located downstream of the Transmit Sensor. On plastic pipes the Transmit Sensor is always located downstream of the Receive Sensor.

Table 7-12	Inline Metal and Plastic Pipe Cable Connections
------------	---

Sensor	Metal Pipe	Plastic Pipe
C2 Sensor (A)	DN	UP
C2 Sensor (B)	UP	DN

In both cases, the cable entry will be on downstream side. Adjacent mounting will provide the maximum sensitivity to flow. Refer to the appropriate sensor installation drawing for the 191N1S (Installation Drawing 191N1S-7).

7.14 Reflexor

Connecting Sensor Cables

Connect sensor cables between the sensors and the flow meter. The XMIT (transmit) sensor is connected to the Up cable connection and RCV (receive) sensor is connected to the Down cable connection. The UP/DN orientation is important for the in-line sensor configuration. It is not a factor for the adjacent configuration.

Select Reflexor Operating Mode

Select [Meter Type] as [Reflexor] for the channel that is to be used as Reflexor. Dual channel units may have either one or both channels used in the Reflexor mode.

```
Functions
```

7.14 Reflexor

Installing Reflexor Operating Mode

- 1. From the [Meter Type] menu press the <Right Arrow>, select the desired channel setup and press <ENTER>.
- 2. Press the <Right Arrow>, scroll to [Reflexor] and press <ENTER>.

Siemens	2 Channel [1] ABC
Channel 1 Sit	
Channel 1	>Reflexor
Channel 2	Clamp-on
2 Chan Flow	

- 3. At the [Channel Setup] menu press the <Right Arrow>.
- Scroll down to [Create/Name Site] and create a site or use a previous Saved Site setup by highlighting [Recall Site].

Note

If a previous Saved Site is recalled, and the same sensor and location is used, then no other installation steps are required.

5. Press the <Left Arrow> and scroll to [Pipe Data] and enter the required pipe data.

Sensor Selection

- 1. From [Pipe Data] scroll to the [Install Sensor] menu and press the <Right Arrow>.
- 2. At [Sensor Model], press the <Right Arrow> and select the proper group of sensors that match the mounted sensor set. For all 191N, select 190.
- 3. At [Sensors Size], select the proper size of sensor mounted. For all 191N, select 191.

Note

If the Flow Volume and Time units are not set to the default units of Gallons per Minute, then it is recommended to change those units now by use of the [Flow/Total Units] menu.

- 4. In the [Install Sensor] menu, scroll down to [Flow Range], press the <Right Arrow> and select the lowest flow range rate available that is at least **two times higher** than the maximum flow expected at this application.
- 5. At [Install Complete], for new installations, press the <Right Arrow>, select [Install], and then select [Yes]. Press <ENTER>.

	2 Channel [1] ABC
Install Completed	?	
Sensor Model	101	1 Universal
Sensor Size	C2	
Flow Range GAL/I	MIN 14.9	99
Install Complete	Yes	
Spectra Graph	No	
Inotall Songer		
Install Sensor		

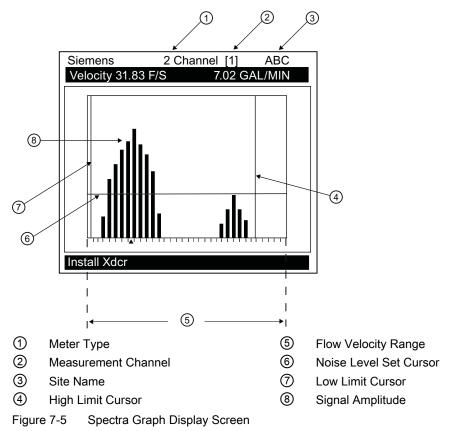
The flow meter is now operational and the display will show flow by pressing the <MENU> key.

The Spectra Graph

The Spectra Graph provides a powerful tool to determine if the installation has achieved an adequate margin of operation. It also eliminates the possible effects of mechanical vibration and external RFI (Radio Frequency Interference). Mechanical vibration and external RFI can cause other types of Doppler flow meters to be inaccurate. The Spectra Graph display provides keypad control keys that allow adjustments of application dependent parameters, if required, while observing the results of these adjustments. Application dependent parameters, only the Noise Cursor will be required to be adjusted.

```
Functions
```

7.14 Reflexor


Selecting the Spectra Graph Display

- 1. In the [Install Sensor] menu scroll to [Spectra Graph] and press the <Right Arrow>.
- 2. Press the <Down Arrow>to select [Yes] and press <ENTER>.

Siemens	2 Channel [1]	ABC	
Display FFT Spe	ectrum and Data	Controls	
Sensor Model	1011 l	Jniversal	
Sensor Size	C2		
Flow Range GAL	_/MIN 14.99		
Install Complete	Yes		
Spectra Graph	No		
	>Yes		
Install Sensor			

The Spectra Graph display shows the results of the Fast Fourier Transform (FFT) performed by the flow meter.

- The horizontal scale represents flow velocity with the higher velocities on the right and lower velocities on the left.
- The vertical axis is relative amplitude or magnitude; each bar shows the relative amplitude for a velocity range.

7.14 Reflexor

The reported flow rate is the mean value of the included Spectra Graph bars. It is computed by excluding signals that are lower (to the left of) than the Low Limit Cursor or higher (to the right of) than the High Flow Cursor or lower (under) than the Noise Cursor.

Spectra Graph Cursor Use

Cursor	Definitions
High Limit Cursor	This cursor appears as a vertical line on the right side of the Spectra Graph. All signals to the right of this line will be excluded from the flow calculation. Use this adjustment if the right side of the Spectra Graph has noise that is larger in amplitude than the signal that is produced by flow. The cursor may be arbitrarily placed at two times the maximum flow expected.
Low Limit Cursor	This cursor appears as a vertical line on the left side of the Spectra Graph. All signals to the left of this line will be excluded from the flow calculation. Use this adjustment if the left side of the Spectra Graph has noise that is larger in amplitude than the signal that is produced by flow. The cursor may be arbitrarily placed at one half the minimum flow expected.
Noise Level Set Cursor	This cursor appears as a horizontal line on the Spectra Graph. All signals below this line will be excluded from the flow calculation. Position the cursor approximately one quarter the height of the FFT peak.

Table 7- 13Cursor Definitions

Using Spectra Graph Data and Controls

When the Spectra Graph is first displayed:

- The data shown on the top highlighted line shows Velocity in feet-per-second (F/S) on the left side.
- The volumetric Flow Rate in the current rate units is displayed on the right side.

You can scroll the data shown by pressing the <Up and Down> Arrows.

- Pressing the <Up Arrow> changes the data in the highlight to [Diagnostic Data] containing, from left to right: (Hz) Doppler shift frequency in Hertz, (mV) Signal Amplitude in millivolts, (FFT Pk) Peak FFT magnitude and (%D) FFT Percent Deviation. Carefully inspect the data for Signal Amplitude and Percent Deviation. Refer to the "Available Adjustments to Spectra Graph" table and the "Reflexor Diagnostic Data" table in this section for details. Press the <Down Arrow> to return to [Velocity].
- Press the <Down Arrow> from Flow Velocity in feet per second (F/S) to advance to the Noise Level Set cursor control. A numeric indication of the Noise Level Cursor position is provided in the highlighted area. Refer to the "Available Adjustments To Spectra Graph" table for details.

3. Adjust the Noise Level cursor, if required, by pressing the <+> key to increase or <-> key to decrease.

Note

A delay in response to all keys will occur. This is due to the longer periodic sampling of the keyboard by the processor while performing FFT's.

- Press the <Down Arrow> from Noise Level to advance to the High Limit cursor control. The <+> and <-> key are active in this position. Refer to the "Available Adjustments To Spectra Graph" table for details.
- Press the <Down Arrow> from High Limit to advance to the Low Limit cursor control. The <+> and <-> keys are active in this position. Refer to the "Available Adjustments To Spectra Graph" table for details.
- 6. Press the <Down Arrow> from Low Limit to advance to the Carrier FX control. The <+> and <-> keys are active in this position.
- 7. Press the <Down Arrow> from Carrier FX to advance to the Diagnostic Data Display. The <+> and <-> keys are active in this position.
- 8. To exit the Spectra Graph, press the <MENU> key.
- 9. To display the Digital Flow Display, press the <MENU> key from any Installation Menu location.

Available Spectra Graph Adjustments

Adjustment	Function	Notes
Noise Level Set	Noise Filter	Set to approximately one quarter the Peak FFT value for typical flow conditions.
High Limit	Low Pass Filter Setting	Set to two times the maximum flow rate.
Low Limit	High Pass Filter	Set to one half minimum flow if noise is present. In most cases, leave at zero.
Carrier Fx	Transmit Frequency Code	Adjust only under guidance of technical support staff.

Reflexor Diagnostic Data

The [Diagnostic Data] menu and the [Application Info] sub menu screen provide one location where all diagnostic data can be viewed.

Note

Adjustments can not be made on the [Application Info] menu screen. Adjustments can only be made on the Spectra Graph.

Application Information	Function / Explanation
Low Limit	High Pass Filter Setting
High Limit	Low Pass Filter Setting
Noise Level Set	Noise Filter Setting
Doppler Frequency (Hz)	Average FFT Frequency
% Deviation	The width of Spectra is used to determine beam penetration and calibration. The selection of "Slurry" in Application Data is recommended for flow rate indication accuracy when the % Deviation is less than 25. For % Deviation above 35 the use of "Liquid" is recommended.
	For applications that continuously have % Deviation between 25 and 35 proper selection of either Liquid or Slurry can be confirmed by comparison to a known flow reference.
Signal Peak-to-Peak mV	Peak-to-Peak demodulation signal amplitude. The acceptable range is between 100 and 3200 mV during typical flow conditions. If less than 100 mV, check Sensor type used and mounting configuration. If greater than 3200 mV, try in-line mounting and/or "detune" Carrier Fx.
FFT s/sec	Number of FFTs per second
FFT Peak	Peak FFT Amplitude
Carrier Fx	Transmit Frequency code

Table 7-14 Diagnostic Data

7.14 Reflexor

Siemens	2 Channel	[1]	ABC
Sets low flow lim	it filter		
Low Limit GAL/M	IN >(0.00	
High Limit GAL/N	1IN 16	6.75	
Noise Level Set	2		
Doppler Freq	85	571	
% Deviation	10	00.00	
Signal PK-PK m	/ 27	7	
FFT s/Sec	28	3	
FFT Peak	0		
Carrier Fx	27	7	
Application Info			
Application into			

Display of "F" at No-Flow conditions

It is normal for the digital display to show an "F" for the no flow condition since the lack of Spectra information during no flow is the same as a fault condition.

Note

Selecting the [Operation Adjust] menu cell [Zero/Fault Set] allows the option of indicating Zero Flow rather than a Fault.

Selecting Liquid Composition

The width of the Spectra wave shape is an indication of the depth of penetration of sonic energy into the flow stream. The % Deviation is a measure of the width of the Spectra and is representative of the penetration of the sonic beam into the liquid.

Select [Slurry] in the [Application Data] menu for better flow rate indication accuracy when the % Deviation is less than 25 with typical flow conditions.

For % Deviations above 35, select [Liquid]. For applications that continuously have % Deviations between 25 and 35, proper selection of either [Liquid] or [Slurry] can be confirmed by comparison to a known flow reference.

7.14 Reflexor

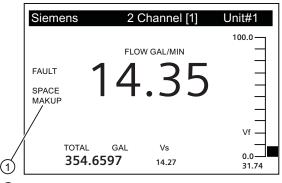
Siemens	2 Channel [1] ABC	;	
Pick Liquid or SI	urry Flow Calibration		
Liq Composition Density S.G.	Liquid 1.00		
Application Data			

Other Menu Entries

All other flow meter menu entries will operate and be used in the same manner as the transit time flow measurement mode.

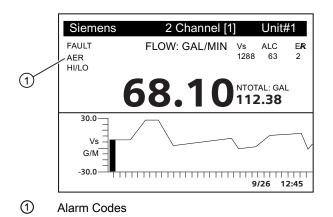
7.14 Reflexor

Alarm, error, and system messages


8.1 Alarm Codes

The following alarm codes appear on the main display of the flow meter.

 Table 8-1
 Alarm Codes and Descriptions


Letter Codes	Alarm Code	Description	
SPACE	Spacing	Sensor spacing may need adjustment	
EMPTY	Empty	Pipe is empty	
HI / LO	Rate	Flow above High setting or below Low setting	
FAULT	Fault	Three continuous seconds without new data update	
AER	Aeration	Current aeration percentage exceeds the alarm set point	
MEMRY	Memory	Last valid reading for a selected interval during Fault condition	
MAKUP	Makeup	In-Process Makeup occurred	
	The following alarm codes appear in the Datalogger status messages:		
1	Interface	Liquid Vs exceeds interface alarm set point	
Р	Pig	Pig passage detected (optional)	
Z	ZeroMatic	ZeroMatic signal occurred	

The displays shown below indicate where the Alarm Codes appear on the screen. Press <UP> or <DOWN> Arrows to change screen views.

1 Alarm Codes

8.1 Alarm Codes

9

Service and maintenance

9.1 Maintenance

The device is maintenance-free. However, a periodic inspection according to pertinent directives and regulations must be carried out.

An inspection can include check of:

- Ambient conditions
- Seal integrity of the process connections, cable entries, and cover screws
- Reliability of power supply, lightning protection, and grounds

NOTICE

Repair and service must be carried out by Siemens authorized personnel only.

Note

Siemens defines flow sensors as non-repairable products.

9.2 Technical support

If you have any technical questions about the device described in these Operating Instructions and do not find the right answers, you can contact Customer Support:

- Via the Internet using the Support Request: Support request (http://www.siemens.com/automation/support-request)
- Via Phone:
 - Europe: +49 (0)911 895 7222
 - America: +1 423 262 5710 / 1 800 333-7421
 - Asia-Pacific: +86 10 6475 7575

Further information about our technical support is available on the Internet at Technical support (http://support.automation.siemens.com/WW/view/en/16604318)

Service & Support on the Internet

In addition to our documentation, we offer a comprehensive knowledge base online on the Internet at:

Service and support (http://www.siemens.com/automation/service&support)

9.3 Return procedures

There you will find:

- The latest product information, FAQs, downloads, tips and tricks.
- Our newsletter, providing you with the latest information about your products.
- Our bulletin board, where users and specialists share their knowledge worldwide.
- You can find your local contact partner for Industry Automation and Drives Technologies in our partner database.
- Information about field service, repairs, spare parts and lots more under "Services."

Additional Support

Please contact your local Siemens representative and offices if you have additional questions about the device.

Find your local contact partner at: http://www.automation.siemens.com/partner

See also

Local contact person (http://www.automation.siemens.com/partner)

9.3 Return procedures

Enclose the delivery note, the cover note for return delivery and the declaration of decontamination form on the outside of the package in a well-fastened clear document pouch.

9.4 Battery disposal

Required forms

- Delivery Note
- Cover Note for Return Delivery with the following information

Cover note

- product (ordering number)
- number of devices or spare parts returned
- reason for the return

• Declaration of Decontamination

Declaration of Decontamination

With this declaration you certify *that the returned products/spare parts have been carefully cleaned and are free from any residues.*

If the device has been operated together with toxic, caustic, flammable or waterdamaging products, clean the device before return by rinsing or neutralizing. Ensure that all cavities are free from dangerous substances. Then, double-check the device to ensure the cleaning is completed.

We shall not service a device or spare part unless the declaration of decontamination confirms proper decontamination of the device or spare part. Shipments without a declaration of decontamination shall be cleaned professionally at your expense before further proceeding.

You can find the forms on the Internet and on the CD delivered with the device.

See also

Decontamination declaration

(http://pia.khe.siemens.com/efiles/feldg/files/Service/declaration_of_decontamination_en.pdf) Return delivery form (http://support.automation.siemens.com/WW/view/en/16604370)

9.4 Battery disposal

In accordance with EU directive 2006/66/EC, batteries are not to be disposed of using municipal waste disposal services.

Waste industrial batteries are accepted back by Siemens or by the local Siemens representative. Please talk to your local Siemens contact (<u>http://www.siemens.com/automation/service&support</u>) or follow the return procedures (Page 156) of Siemens.

9.5 Disposal

9.5 Disposal

Devices identified by this symbol may not be disposed of in the municipal waste disposal services under observance of the Directive 2002/96/EC on waste electronic and electrical equipment (WEEE).

They can be returned to the supplier within the EC or to a locally approved disposal service. Observe the specific regulations valid in your country.

Troubleshooting

10

10.1 Troubleshooting

The following is list of troubleshooting tips and messages that you may encounter. They include explanations and, in some cases, a recommended action. If a problem seems unsolvable, contact your local Siemens office or regional Ultrasonic Flow Representative for expert help at: http://www.automation.siemens.com/partner (http://www.automation.siemens.com/partner).

Table 10-1 Troubleshooting Tips

Error or Message	Probable Cause	Solution
Memory Full!	Response to an attempt to save site data, when data memory is full.	Delete an obsolete site or clear Datalogger memory to make room for the new data.
Memory Corrupted!	Memory read error occurred while accessing the active site data.	Refer to F4 reset procedure in the Operation Instructions manual.
Chan Not Setup	Response to an attempt to invoke an operation that requires a channel to be enabled.	Enable the channel [Channel Setup - Channel Enable - Yes]. Note that a channel cannot be enabled until an "Install" operation is completed.
Clr Active Memory?	Response to pressing and holding the F4 key during power-up.	Use the F4 key function to restore operation if a severe event (e.g., a violent power surge) disrupts system operation.
Clr Saved Data?	[Clr Saved Data?] only appears after pressing the <down arrow=""> in response to [Clr Active Memory?].</down>	Answering Yes to [Clr Saved Data?] will erase ALL saved data. To invoke in RS-232 serial mode, type @@@@ and then press <enter> key.</enter>
<eot></eot>	Response to a request to output Datalogger data to the printer or the Graphics screen when no Datalogger data exists or at the end of a transmitted file	Set up the Datalogger.
No Sites - Press <enter></enter>	Response while trying to recall/delete a site setup when no sites are stored.	Create a site.
Security	Response upon changing previously entered data when security switch is in [Disable] position or security code has been entered.	Change switch position to [Enable].Enter previously set security code.
RTC Error	Component level problem.	Meter requires service. Request RMA.
F Fault Alarm	 Loss of signal strength (ALC) Change of Rx signal location (Beam Blowing) 	 Recouple sensors with fresh couplant. Install sensors in Direct mount mode Note: If problem persists call Tech support.

Troubleshooting

10.1 Troubleshooting

Error or Message	Probable Cause	Solution
Re-space Index	The measured liquid sonic velocity (Vs) is more than +/- 25% of the average Vs range.	 Ensure proper pipe dimensions and/or Liquid data entries are correct. Properly enter correct Sensor Size into the meter [Install Sensor] menu. Confirm sensor spacing is correct by checking [Install Sensor] menu spacing parameters. This may be due to one of the following:
Direct Mode)	detects invalid Sensor spacing, erroneous liquid or pipe parameters, or some other factor that prevents it from completing the Initial Makeup.	 An out-of-range data entry. An invalid condition (e.g., overlapping Sensors in Reflect Mode). If selecting Direct Mode does not resolve, review all site setup and Sensor installation choices; particularly data entered for pipe and liquid. In Reflect Mode the flow meter detects that the pipe wall signal may impinge upon the liquid signal. Use Direct Mode instead. Press <enter>, <up arrow="">, <down arrow="">, or <left arrow=""> to abort install routine. Continue programming other site data in anticipation of resolving the difficulty later. Call technical support for help if necessary.</left></down></up></enter>
Low Signal - Press <enter></enter>	During the Initial Makeup the flow meter decides that the level of the receive signal is insufficient for proper operation.	 Some reasons for low signal are: Invoking [Install Complete?] on an empty pipe. Coupling compound insufficient; not applied or evaporated. Reapply couplant. A disconnected or broken Sensor cable. The pipe needs to be conditioned at the mounting location. Flush out large air bubbles. The Sensor cables are defective or not connected to the correct channel. The Set Empty routine performed when pipe was NOT actually empty. If you locate and correct the improper condition immediately, press <enter> to resume the installation procedure. Otherwise, press the <left Arrow> to abort the installation and conduct a thorough investigation.</left </enter>
Detection Fault	If it appears that the flow meter cannot complete an Initial Makeup it means that the pipe and/or liquid conditions do not permit a receive signal that meets the flow detection standards. The system will not operate.	Attempt to improve operating conditions by reinstalling the Sensors at a different spacing offset, or even at a different location on the pipe. Switching from Reflect to Direct Mount may solve the problem. However, operation may not be possible if there is poor liquid or pipe wall sonic conductivity.

10.2 F4 Reset Procedure

Note

If you receive a Detection Fault message, it is strongly recommended that the Technical Service Department (http://www.automation.siemens.com/partner) be contacted.

10.2 F4 Reset Procedure

You may encounter an operating problem that blocks access to the Diagnostics Menu, or the flow meter may operate erratically after exposure to a power transient or some other traumatic event. These cases may require use of the F4-reset sequence to restore operation.

The F4-Reset sequence operates on two levels:

Clear Active Memory

The first F4-Reset deletes all the data currently in Active Memory, but leaves Datalogger data and all stored Site Setups intact. This is the most desirable method since all you have to do to restore operation is reload a saved Site Setup.

Clear All Saved Memory

If the first sequence fails then you have to resort to the second level of the F4 sequence, which allows you to clear ALL Saved Memory. **Be aware that this erases all saved Site Setups (including flow calibrated sites), Datalogger Data and user-defined pipe and sensor tables.** This will require you to completely re-install the system and repeat all desired default settings, custom pipe tables, etc. The table below shows the sequence of the [F4] routine:

[Power On/Off + F4]⇒	[Clr Active Memory?]⇒	⇒No
	↑ ↓	⇒Yes
	[Clr Saved Data?]⇒	⇒No
		⇒Yes

Clearing only Active Memory

- 1. Turn off power (if it is currently on). Press <F4> and keep it pressed while you turn on power. The prompt: [Clr Active Memory? No] appears at the top of the screen.
- Press <Right Arrow> to access F4 Reset option list. Press <Down Arrow> to switch the option list to [Clr Active Memory? Yes]. Press <ENTER> to clear all Active Site Data (but not saved Site Setups).
- 3. To restore operation, press <MENU> to access the installation menu. Create a new site setup or recall a stored site setup.
- 4. Re-select any Meter Facilities menu items (e.g. RS-232 setup parameters).

Clearing All Saved Data

- 1. Turn off power (if it is currently on).
- 2. Press <F4> and keep it pressed while you turn on power. The prompt: [Clr Active Memory? No] appears at the top of the screen. Press the <Down Arrow>. Note that the prompt switches to [Clr Saved Data? No].
- 3. To access the F4 Reset option list press the <Right Arrow>. Press the <Down Arrow> to switch the option list to [Clr Saved Data? Yes].

NOTICE

Loss of RAM Data

Before proceeding further it is essential to understand that this function eliminates ALL data stored in RAM. This means that all saved site setups including the site data of a flow-calibrated site will be erased! In addition, the entire Datalogger file plus any custom factory or user-created pipe or sensor tables will be eliminated.

The impact of this is such that we strongly recommend that you consult Technical Services before continuing with this procedure. Be aware that you will have to create a new Site Setup, re-enter all site specific parameters including pipe or sensor tables, plus all desired Meter Facilities menu entries.

- 4. To clear all Saved Memory press <ENTER>.
- 5. Create a Site Setup before attempting to access other menu items.
- 6. To restore operation, press <MENU> to access the installation menu. Create a new site setup and complete the installation procedure.
- 7. Re-select desired Meter Facilities menu items (e.g. RS-232 setup parameters).

10.3 Test Facilities Graph Screen

When operating in the transit time mode the Test Facilities Graph Screen is an exceptional diagnostic tool for troubleshooting problem applications or simply determining Receive signal quality. The primary function of this screen is to display the digitized receive signal waveform with the similar appearance and function of a digital oscilloscope. This screen also allows the user to override some of the flow meter default settings by permitting adjustment to the measured transit time, the digital averaging and the zero crossover used in the measurement of the up/down transit time difference. The figure shown below is a representation of the diagnostic graph.

Note

The Test Facilities Graph Screen requires significant CPU overhead. The flow meter should not be left in this mode during normal operation where the Datalogger is the primary output or during calibration work.

Troubleshooting

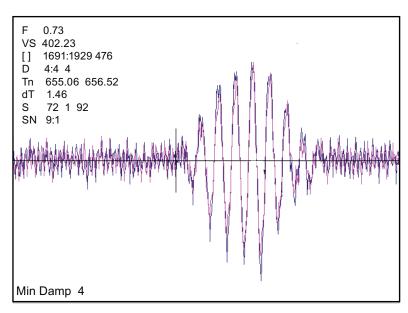


Figure 10-1 Test Facilities Graph Screen

Entering the Diagnostic Graph Screen

Before you can view the Diagnostic Graph Screen the flow channel must first be properly installed and operating in a non-empty condition. If a previously installed channel is in a "Fault" condition, but not reporting "Empty", you can still access the Graph Screen to aid in troubleshooting the cause of the failure to measure flow.

To view the Graph Screen first enter the [Test Facilities] menu, which is a submenu of the main [Diagnostic Data] menu.

- 1. Pressing the <Up/Down Arrows>, scroll to the [Graph] menu item.
- 2. Press the <Right Arrow> to enter the [Graph] menu and scroll to highlight the [Yes] item in the option list.
- 3. Now press the <ENTER> key to access the Graph Screen.
- 4. To exit the Graph Screen and return to the main menu, press the <MENU> key once.

Diagnostic Text Display

The text to the upper left-hand corner of the screen represents diagnostic items which can be individually turned on or off to reduce unnecessary clutter on the screen. This text display can be modified by pressing the <ENTER> key and scrolling up or down through the various parameters that appear in the Graph Display menu. Pressing the <ENTER> key will select the highlighted parameter (a "+" sign appears next to selected items) and pressing <CLR> will deselect the item. Pressing the <Left Arrow> will return you to the graph screen with the selected parameters appearing at the top left corner of the screen. (The sample graph above is shown with all diagnostics items selected).

Time Base Control

The digitized receive signal can be moved either to the left or right on the screen by pressing the <Left> or <Right> keypad arrows. The direction of the arrow actually represents the direction in which the Receive "window" will move, thereby causing the receive signal to shift in the opposite direction on the screen (e.g., Pressing the <Left Arrow> moves the signal to the right).

The digitized receive signal can be expanded or contracted in the time domain by pressing the <+> or <-> keys on the keypad. This allows you to see the entire contents of the receive window, or zoom in to see greater detail. Pressing the <CLR> key once will automatically center the receive signal on the screen. When expanding the Receive signal small vertical "tick" marks will eventually appear. These marks represent the time at which the receive signal is digitally sampled.

Correlated Plot

During conditions of flow, the actual transit time delta (difference) can be observed in the displayed receive signal waveform when the [Correlated Plot] menu parameter is not selected. To observe this time difference simply depress the <+> key (to see greater signal detail) until the individual up and down receive signals are clearly discernible. To verify that the flow meter signal processing algorithms are properly correlating the up and down stream receive signals, select the [Correlated Plot] option from the display menu list.

Return to the graph screen and observe the relative position of the up and down waveforms. In a properly correlated receive signal the two images should be nearly superimposed on top of each other, even during high flow conditions. In the unlikely situation where the two images appear to be offset by one or more receive cycles then the flow readings should be considered questionable.

Command Modes

Although the flow meter signal processing algorithms are capable of accommodating a very wide range of signal conditions, it may be desirable to override these default settings under extremely difficult operating conditions. The following functions are available for this purpose.

Digital Damping Control: (Hot Key 1 and 2)

The meter permits user modification of the digital averaging used by the signal processing routines. In general, the default damping values selected by the flow meter will provide optimal performance over a wide range of transit time applications. However, in extreme cases of unstable flow, pulsating flow, low signal levels or high electronic noise it may be necessary to override these default settings to permit uninterrupted and reliable flow measurement.

Test Facilities Graph Screen

The Graph Screen includes the capability to access a set of command codes, which enable a user to override a number of default meter settings. The most important parameter is the digital damping control, which can be accessed by pressing number <1> or <2> on the keypad while in the Signal Graph Screen mode.

[MinDamp #] Command

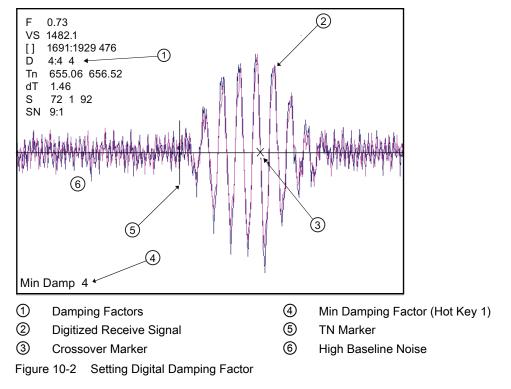
Pressing the <1> key will cause [MinDamp #] to appear on the command line at the lower left-hand corner of the screen. The number listed to the right of the command code represents the exponent in the meter exponential averaging routine, where the larger the number the greater the digital averaging. Pressing the <+> key will increase the damping value. Likewise, pressing the <-> key will decrease the damping value.

To exit this mode, press the <0> key on the keypad.

[MaxDamp #] Command

Pressing the <2> key will bring up the [MaxDamp #] command. The function of this parameter is similar to the [MinDamp #] command described above; however, the two parameters interact in the following manner. The MinDamp value must not exceed the MaxDamp value; therefore increasing the MinDamp value above the previous MaxDamp value will set both parameters to the same value. In most cases, it is preferred that both damping parameters be set to the same value, however, in cases where rapid response to changes in liquid sound velocity for flow rate is required, the two values may be set differently. In this situation the meter will use the MaxDamp value when conditions are stable, but then switch to a faster damping value (limited by MinDamp) when a significant change in sound velocity or flow rate is perceived.

To exit this mode, press the <0> key on the keypad.


To access the Digital Damping Control using the Test Facilities Graph Screen, proceed as follows:

Note

To use the Test Facilities Graph Screen you must have a working site.

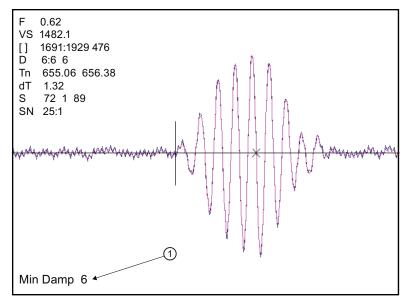
To activate the Test Facilities Graph Screen:

- 1. In the main menu, scroll to the [Diagnostic Data] menu and select [Test Facilities].
- Scroll down to [Graph], press the <Right Arrow> and highlight [Yes]. Press <ENTER> to select.
- 3. The Test Facilities Graphic Screen will appear on the meter display as shown below.

Setting the Digital Damping Factor to a value HIGHER than the default value of 4 may be necessary in cases where the signal-to-noise ratio (SN) is found to be unacceptably low (<15:1), but only if the noise is determined to be asynchronous (i.e., not associated with the transmit or flow meter timing circuitry) as shown in the signal example above, where the baseline noise has a higher frequency than the true liquid signal.

The following application conditions may require a higher Digital Damping Factor:

- Close proximity to pressure control valves which may generate in-band acoustic noise
- High un-dissolved gas solids content in liquid.
- High electronic noise from variable frequency drives or other external equipment.


To INCREASE the Digital Damping:

1. Press the <1> key while viewing the Test Facilities Graph Screen as shown above. The damping control [MinDamp #] will appear on the command line at the lower left-hand corner of the screen.

Note

The number listed to the right of the command code on the screen represents the exponent in the exponential averaging routine (digital damping), where the larger the number represents the greater the digital averaging. Setting this exponent higher than 7 is generally not recommended.

 Pressing the <+> key will increase the MinDamp Factor by one unit for each key press. To exit this mode, press the <0> key on the keypad.

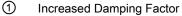


Figure 10-3 Setting the MinDamp Factor

The above example shows that increasing the Digital Damping reduces asynchronous noise.

Setting the Digital Damping factor to a value LOWER than the default value of 4 may be justified in cases where pulsating flow is present (such as from a reciprocating pump) or for the purpose of diagnosing transient signal behavior. A pulsating flow condition that generates more than +/- 45 degrees of phase jitter will generally cause signal correlation problems when any digital averaging is used. In this case it may be necessary to completely eliminate the digital averaging by reducing the Digital Damping Factor to 0.

To DECREASE the Digital Damping:

- 1. Press the <2> key while viewing the Test Facilities Graph Screen. The damping control [MaxDamp #] will appear on the command line at the lower left-hand corner of the screen.
- Pressing the <-> key will decrease the MaxDamp Factor by one unit for each key press. To exit this mode, press the <0> key on the keypad.

Transit Time Adjustment: (Hot Key 3)

Observe the short vertical marker at the beginning of the receive signal in the Graph Screen above. This line represents the position in time (Tn) where the flow meter perceives the arrival of the ultrasonic signal. There are actually two Tn markers, one for the upstream arrival time and one for the downstream arrival time. For proper liquid sound velocity measurement these Tn markers should be positioned near the beginning edge of the receive waveform envelope (as shown), however, in cases of poor signal conditions it is possible for this measurement to be off by several receive waveform cycles.

- 1. To adjust the Tn mark position press the <3> key on the keypad to bring up the [TnSet #] command.
- Pressing the <+> or <-> keys will cause the Tn marker to move later or earlier, respectively. As you adjust the Tn marker, both Tn and Vs (liquid sound velocity) will change accordingly.
- 3. To exit this mode, press the <0> key on the keypad.

Zero Crossover Adjustment: (Hot Key 4)

Observe the small "X" mark located on the zero crossing line near the middle of the receive signal in the Graph Screen above. This "X" indicates the central crossover which the flow meter is using to measure the transit-time delta. This crossover will generally be close to the peak of the Receive signal with at least one well formed (non-aberrated) receive cycle on each side of the crossover.

- If it appears that the placement of this crossover is unsatisfactory then it can be adjusted by pressing the <4> key on the keypad, which will invoke the [ZCO Set #] command. The crossover point can then be moved in either direction on the waveform using the plus <+> or minus <-> keys. The change from the default value (in receive cycles) will appear in the number to the right of the command.
- 2. To exit this mode, press the <0> key.

Envelope Threshold Adjustment: (Hot Key 5 & 6)

Pressing the <=> key causes the graph to toggle between the default signal waveform screen and the signal envelope screen (see example below). This envelope screen can aid in the diagnosis of Tn errors caused by unusual receive waveform distortion. Signal distortion is sometimes caused by poor sensor selection or poor pipe wall conditions, which may result in an incorrectly measured fluid sound velocity. To improve the automatic measurement of Tn, the envelope threshold limit can be adjusted to exclude portions of the envelope, which may be causing the Tn detection problem.

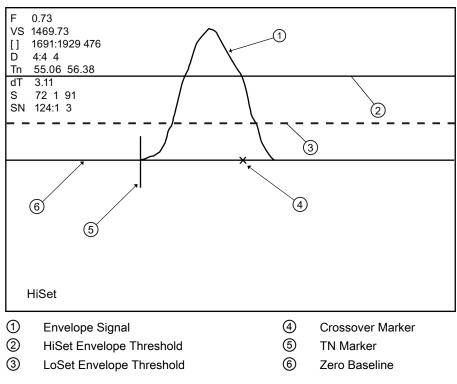


Figure 10-4 Envelope Threshold Adjustment

- 1. If it appears that the default placement of the Tn marker is incorrect or unstable, it can be adjusted by pressing the <5> key on the keypad to invoke the [Hi Set #] command or by pressing the <6> key to invoke the [Low Set #] command (while viewing the envelope screen). A horizontal line representing the envelope threshold level will appear along with a number indicating the percentage level. The High and Low thresholds can then be moved either up or down on the envelope using the <+> or <-> keys. While viewing the Tn marker position, adjust the thresholds so that they are well above the baseline "noise" level but below the first major peak.
- 2. To exit this mode, press the <0> key.

Signal Masking Function: (Hot Key 7)

Under conditions of extremely low signal amplitude, a noise spike associated with the flow meter receive signal window may be present on the extreme left side of the graph display. If this spike is large enough it may interfere with the signal detection routines.

- 1. To eliminate this noise from the signal processing routines, press the <7> key to invoke the [Mask Set #] command, then press the <+> key until the noise is no longer present in the receive waveform.
- 2. Press <0> to exit this command.

Hold Set Function: (Hot Key 8)

The [Hold Set #] command is used to set the Hold Set number higher if intermittent misregistration occurs. Press the <8> key on the keypad to invoke this function.

Table 10- 2	Description of Graph Screen Text Display Parameters
-------------	---

Screen Text Parameters	Menu List Item	Description
F	Flow	Measured flow rate in selected flow units.
VS	Vs m/s	Sound Velocity in meters per second.
[]	Display Metrics	Represents the digital sample position of the receive window.
	Correlated plot	Displays the receive waveform in its proper superposition or registration. The true delta time will be displayed by NOT selecting "Correlated Plot".
	Centroid Mark	Indicates with a large vertical marker the peak energy of the receive waveform.
D	Damping	Displays the minimum and maximum digital damping exponent along with the active damping exponent.
Tn	Tn (usec)	Receive signal transit time in microseconds.
dT	DeltaT (nsecs)	Transit time delta (difference) in nanoseconds.
S	Signal Strength	Displays %Valc (amplitude), %Vaer (aeration factor) and numeric ALC.
SN	Signal-to-Noise Ratio	Indicates the signal to noise ratio of the receive signal. Increased damping will increase the S/N ratio as the asynchronous noise reduces.
	Envelope	Percentage change of the signal from Initial Makeup conditions.

Troubleshooting

10.3 Test Facilities Graph Screen

Кеу	Command Line	Description
<+>		Expands (magnifies) waveform to view more detail.
<->		Contracts waveform to view more of the waveform.
<left arrow=""></left>		Shifts receive window to the left (waveform to the right).
<right arrow=""></right>		Shifts receive window to the right (waveform to the left).
<clr></clr>		Brings waveform to the center of the screen.
<enter></enter>		Calls up Text Display menu items. <left arrow=""> to return to graph.</left>
<menu></menu>		Exits the Graph Screen and returns to the main menu.
<1>	MinDamp	Minimum damping exponent control (+ or - to increase or decrease).
<2>	MaxDamp	Maximum damping exponent control (+ or - to increase or decrease).
<3>	TnSet	Transit time adjustment (use + or - to move Tn marker).
<4>	ZCOSet	Zero Crossover adjustment (use + or - to move crossover marker).
<5>	HiSet	Signal envelope threshold level (use + or - to move threshold).
<6>	LoSet	Signal envelope threshold level (use + or - to move threshold).
<7>	MaskSet	Leading edge masking functions (use + or - to alter number of samples masked).
<8>	Hold Set	Set this number higher if intermittent mis-registration occurs.
<0>		Exits the command line.
<=>		Toggle graph between receive waveform and envelope waveform.
<f1> and <.></f1>		Dumps the digitized waveform data over the RS-232 port. You must first leave the Graph Screen mode before invoking this command.

Table 10-3 Hot Key Summary

10.4 Site Setup Data

10.4 Site Setup Data

This menu provides data pertaining to sensor characteristics and operation. Some menu items are for technical support interpretation only.

Siemens	Dual Path [1]	ABC
Current transmit	drive code	
fx (drive)	30	
N (burst length)	5	
Ltn	-1.154	
Vf max	1577.42	2
Vs max M/S	2165.41	1
Vs min M/S	939.62	2
Empty	30	
Samples/Cycle	16	
Max Damping		
Min Damping		
HF	0.120	
Site Setup Data		

Table 10-4 Site Setup Menu Items

fx Drive	Current Transmit drive code selected during Initial Makeup. The drive code controls the sonic transmit signal.
N (burst length)	Transmit burst duration selected during Initial Makeup. To change N count press <right Arrow>. At equal sign enter numeric value (1 to 9 only).</right
Ltn (mm/in)	Spacing distance between the sensors. It will be in inches or millimeters, depending on default units.
Vf max	The flow velocity (in selected units) corresponding to one whole cycle offset between upstream and downstream receive signals.
Vs max M/S	Maximum Vs for current sensor spacing.
Vs min M/S	Minimum Vs for current sensor spacing.
Empty	Value of Empty Alarm Setting. The meter will declare an empty status if signal strength drops below this value.
Samples/Cycle	Digital sampling rate.
Max Damping	Maximum signal damping. Use to average digital data when an unstable condition occurs.
Min Damping	Minimum signal damping. Use to average digital data when an unstable condition occurs.
HF	Flow registration correction parameter.

[HF] Menu Item

The flow meter includes a Diagnostics Menu item that permits the entry of a flow registration correction parameter labeled [HF]. This "HF" parameter is the input for a proprietary algorithm that automatically compensates for signal beam blowing, thereby extending the upper flow limit of the flow meter. The HF parameter should only be adjusted in cases where the user suspects that extreme flow velocity or a large delta-time may be causing signal correlation problems.

Using the [HF] Menu Cell

Two methods for adjusting this parameter are provided via the [HF] menu cell, located within the [Diagnostics] / [Site Setup] submenu. The "Manual" method provides direct entry of this parameter and is primarily intended for the advanced user, whereas the "Automatic" method allows the flow meter to automatically measure the required correction and install the parameter.

Guidelines for use

- This menu is only accessible for the sensor channels, not the virtual (average flow) channel of the flow meter (i.e., Diagnostics Path 1 or Path 2, but not Path 1 & 2).
- The flow meter will inhibit the "Automatic" installation of the [HF] parameter if the flow rate is insufficient (too low) to accurately measure the required correction. If the maximum flow rate for the application is relatively low then this correction is not be required.
- If the flow rate is very high and the flow meter is reporting erroneous or unstable flow, then the flow meter may already be having trouble resolving the upstream and downstream signals. In this event, it may be necessary to first lower the flow rate to a moderate level before performing the "Automatic" HF adjustment. Once this is done the flow meter should be able to properly measure the highest flow rates without problems.
- The limits of the "HF" parameter are +/- 0.7 and any attempt to manually install a larger value will cause the flow meter to abort the installation of the parameter.

Note

Pressing the <Left Arrow> at any stage prior to accepting the measured value will abort the installation and return to the previous setting.

Accessing the [HF] Function

- 1. At the [Meter Type] Menu, press the <Right Arrow> and then <ENTER> to select the desired Path (e.g., Dual Path Flow).
- 2. In the [Dual Path Flow] Menu, press the <Down Arrow> and scroll to the [Diagnostic Data] menu cell. Press the <Right Arrow> to select it.
- 3. In the [Diagnostic Data] Menu, highlight [Path Select] and select the desired sensor path. Press <ENTER> to select path.
- 4. Press the <Down Arrow> and scroll to the [Site Setup Data] menu cell. Press the <Right Arrow> to select it.

10.4 Site Setup Data

Manual Adjustment Procedure

1. In the [Site Setup Data] Menu, press the <Down Arrow> and scroll to the [HF] menu cell. Press the <Right Arrow> and a pop-up [Manual] prompt will appear as shown below.

Note

Press the <Up/Down Arrow> to select [Automatic], if desired.

2. Use the numerical keys to input the desired correction value. Press <ENTER> to input value.

Siemens	Dual Path [1]	ABC
fx (drive) N (burst length) Ltn	29 5 -5.136	
Vf max Vs max M/S Vs min M/S	¹⁵⁷⁷ Adjustment >Manual 41 939.62	
Empty Samples/Cycle Max Damping	29	
Min Damping HF	>0.000	
Site Setup Data		
Siemens	Dual Path [1]	ABC
Siemens	Dual Path [1]	ABC
fx (drive) N (burst length)	Dual Path [1] 29 5	ABC
fx (drive) N (burst length) Ltn Vf max Vs max M/S	29	ABC
fx (drive) N (burst length) Ltn Vf max Vs max M/S Vs min M/S	29 5 5.126 1577.4>Manual	ABC
fx (drive) N (burst length) Ltn Vf max Vs max M/S Vs min M/S Empty Samples/Cycle	29 5 5.126 1577.4>Manual	ABC
fx (drive) N (burst length) Ltn Vf max Vs max M/S Vs min M/S Empty	29 5 5.126 1577.4>Manual = 0.120.41 939.62	ABC

3. The new correction value will appear next to the [HF] menu cell as shown below.

Siemens	Dual Path [1]	ABC
fx (drive)	29	
N (burst length)	5	
Ltn	5.136	
Vf max		
Vs max M/S		
Vs min M/S	1355.00	
Empty		
Samples/Cycle	29	
Max Damping		
Min Damping		
HF	>0.120	
Site Setup Data		

Automatic Adjustment Procedure

- 1. In the [Site Setup Data] Menu, press the <Down Arrow> and scroll to the [HF] menu cell. Press the <Right Arrow> and a pop-up [Manual] prompt will appear.
- 2. Press the <Up or Down Arrow> to select [Automatic] then press <ENTER>.
- 3. The current measured correction value is displayed (see below).
- 4. Press <ENTER> again to install this correction value which will now appear next to the [HF] menu cell.

10.4 Site Setup Data

Note

The value shown in the [Automatic] pop-up prompt can not be changed and is for user information only.

Siemens	Dual Path [1]	ABC
fx (drive)	29	
N (burst length)	5	
Ltn	-5.136	
Vf max	1577 Adjustment	
Vs max M/S	>Automatic	
Vs min M/S	939.62	
Empty		
Samples/Cycle	29	
Max Damping		
Min Damping		
HF	>0.000	
Site Setup Data		

Siemens	Dual Path [1]	ABC
fx (drive)	29	9
N (burst length)	Į.	5
Ltn	-5.13	6
Vf max	1577 >Automatic	
Vs max M/S	= 0.026	
Vs min M/S	939.6	2
Empty		
Samples/Cycle	29	9
Max Damping		
Min Damping		
HF	>0.020	6
Site Setup Data		

5. If you decide not to use the [Automatic] selection, press any key other than <ENTER> to abort the operation.

10.5 Force Transmit

NOTICE

Incorrect Diagnostic Procedures

The Force Transmit and Force Frequency diagnostic procedures are preconfigured at the factory and should only be implemented by approved Siemens personnel otherwise damage to the equipment may occur.

Restrict use and repair to qualified personnel.

This diagnostic software routine allows the user to "force" a transmitting condition that can be used to search for an amplitude level (ALC) when Detection Fault or Low Signal alarms are present. The routine forces the flow meter to generate constant transmit bursts while reporting current receive signal strength for the user. To initiate the Force Transmit function, refer to the Short Burst detection mode example shown below.

Setting a Force Transmit condition

1. After [Install] command is invoked and while the flow meter is going through the drive selections press the <ALT> and <MENU> keys simultaneously.

Siemens Install Completed	Dual Path [1] 1?	ABC	Siemens Drive 0	Dual Path [1]	ABC
Install Path Sensor Model Sensor Size Sensor Mount Mo Spacing Offset Number Index Spacing Method Ltn Value (in) Install Complete Empty Pipe Set Zero Flow Adjust Install Sensor	Minimum 4 Spacer Ba 0.217 No Channel N	ar 1012TP Not Setup	Install Path Sensor Mod Sensor Size Sensor Mod Spacing Off Number Ind Spacing Me Ltn Value (in Install Com Empty Pipe Zero Flow A	e B3 unt Mode Direct fset Minimun ex 4 uthod Spacer B n) 0.217 olete Install Set Channel adjust Channel	

Note

The <ALT> and <MENU> keys must be pressed before the flow meter scans through all the drives, or the Force Transmit function must be initiated again.

A typical menu screen will appear as shown below and indicate the current ALC (e.g., 50). This ALC number indicates the current receive signal strength and can be used for further diagnostic purposes.

Siemens Dual	Path [1]	ABC	Siemens	Dual Path [1]	ABC
ForceN fx=8	m=7 ALC=	50			
Install Path	1		Install Path	1	
Sensor Model	1011HP-T1		Sensor Model	1011HP-T1	
Sensor Size	B3		Sensor Size	B3	
Sensor Mount Mode	Direct		Sensor Mount M	ede Direct	
Spacing Offset	Minimum		Spacing Of	Detection Fault	
Number Index	4		Number Ind	Press [ENT]	
Spacing Method	Spacer Bar	1012TP	Spacing Me	Spacer Bar 10	2TP
Ltn Value (in)	0.217		Ltn Value (in)	0.217	-
Install Complete	Install		Install Complete	Install	
Empty Pipe Set	Channel No	t Setup	Empty Pipe Set	Channel Not	Setup
Zero Flow Adjust	Channel No	t Setup	Zero Flow Adjust	Channel Not	Setup
Install Sensor			Install Sensor		

- To exit Force Transmit, press the <Left Arrow> and a Detection Fault prompt will appear (see above).
- 4. Press the <Left Arrow> again and the meter will return to the [Install Sensor] menu and highlight the [Empty Pipe Set] menu cell.

Setting a Forced Frequency

- 1. To force a frequency, repeat steps 1 and 2 above, but press <Right Arrow>. The following typical display line will appear: **Drive =0**
- 2. Using numeric keys enter the frequency and press <ENTER>.
- 3. To complete the Install process after mounting the transducers press <ENTER>.
- 4. If the Force Transmit diagnostic procedure is not used, the normal [Install Complete] function occurs.

11

Technical data

11.1 Technical Data

Transmitter

- Operating Temperature Range: -18°C to 60°C (0°F to 140°F)
- Storage Temperature Range: -20°C to 93°C (-4°F to 200°F)

Degree of Protection

- Wall mount enclosure: IP65 (NEMA 4X)
- Wall mount explosionproof: IP66 (NEMA 7)

Input

- Flow Range: ± 12 m/s (± 40 ft/s), bidirectional
- Flow sensitivity: 0.0003 m/s (0.001 ft/s), flow rate independent

Accuracy

- Calibratable accuracy: ± 0.15% to 0.3% of flow, depending on version
- Batch repeatability: ± 0.05% of flow, maximum
- Zero Drift: 0.0003 m/s (0.001 ft/s), with ZeroMatic path active
- Data refresh rate; 5 Hz (80 Hz output for flow rate available on special order)

Power Supply

 IP65 (NEMA 4X) and IP66 (NEMA 7) Wall Mount - 90 to 240 VAC @ 50 or 60 Hz 30 VA / 9 to 36 VDC, 12 Watts

Sensor

- Type: Nonintrusive, externally mounted
- Temperature Range: -40°C to +120°C (-40°F to +250°F)

Dimensions

- 23.6 cm (9.31 in) x 28.7 cm (11.31 in)
- Net weight: 4.1 kg (9.0 lbs.) max

Technical data

11.1 Technical Data

Liquid Temperature

- Standard: -40°C to +121°C (-40°F to +250°F)
- Optional: -40°C to +232°C (-40°F to +450°F)

Liquid Type

- Water
- Multiple Crude Oils
- Light Crude only
- Heavy Crude only
- Multiple Finished Products
- Gasoline Only
- Kerosene
- Jet Fuel
- Diesel
- Multiple Fuel Oils
- Heavy Fuel Oils
- Liquefied Gases
- Other (Define Liquid name and Vs)

Unit Repair and Excluded Liability

All changes and repairs must be done by qualified personnel, applicable safety regulations must be followed. Please note the following:

- The user is responsible for all changes and repairs made to the device.
- All new components must be provided by Siemens Industry, Inc.
- Restrict repair to faulty components only.
- Do not re-use faulty components.

A.1 Ordering

In order to ensure that the ordering data you are using is not outdated, the latest ordering data is always available on the Internet: Catalog process instrumentation (http://www.siemens.com/processinstrumentation/catalogs)

See also

Process instrumentation catalog (http://www.siemens.com/processinstrumentation/catalogs)

A.2 I/O Connections and Wiring

Terminal Block Wiring - 7ME39400AL00 and 7ME39400AL01 I/O Module

(Refer to manual drawing 1010N-2-7 sheet 2 of 2)

These connection diagrams apply to the part numbers listed below.

Table A-1 Connection Diagrams and Part Numbers

	1010N-2-7 (Sheet 2 of 2) Drawing		
FUS1010	7ME3530, 7ME3533		
FUE1010	7ME3500		
FUH1010	7ME3600, 7ME3603		

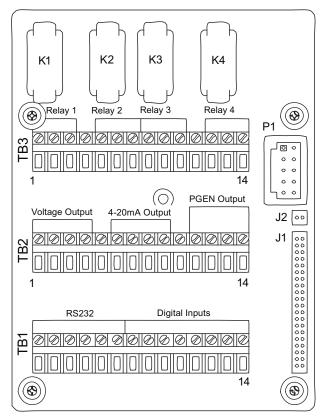
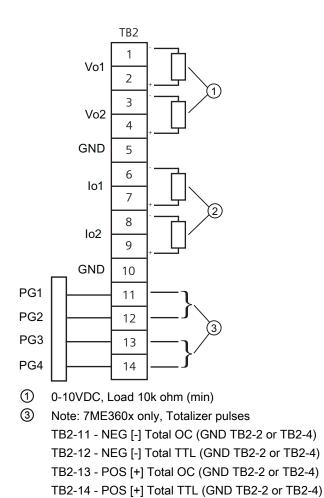
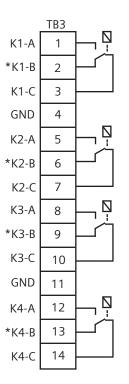



Figure A-1 7ME39400AL00 and 7ME39400AL01 I/O Module

	Table A- 2	Input/Output Wiring (TB2)	- 7ME39400AL00 and	17ME39400AL01 I/O Modu	Ile (for 7ME3500 or 7ME3530 only)
--	------------	---------------------------	--------------------	------------------------	-----------------------------------

Pin#	Signal	Description	Definition	Function
1	Vo1+	Meter process variables	0-10 Volt Analog Output	System outputs assignable and scalable
2	Vo1-	are assigned to individual	Ref. Ground	to flow related parameters. CGND is for
3	Vo2+	outputs under menu control.	0-10 Volt Analog Output	cable shield terminations.
4	Vo2-		Ref. Ground	4-20mA outputs also provide a fault indication by dropping to 2mA if assigned
5	CGND		Chassis GND	to flow rate and under fault conditions.
6	lo1+		4-20mA Output 1	
7	lo1-		Isolated Return	
8	lo2+		4-20mA Output 2	
9	lo2-		Isolated Return	
10	CGND		Chassis GND	
11	PG1	0 -5000 Hz Frequency	Frequency Output 1	5V TTL
12	PG2	output; assignable.	GND	GND
13	PG3		Frequency Output 2	5V TTL
14	PG4		GND	GND


Appendix

2 4-20mA Load 1k ohm (max)

Pin#	Signal	Definition	Description	Function Single Channel	Function Dual Channel	Function Dual Path	Function Dual Path Only	
1	K1 A	Relay 1 Normally Open	Relay 1	Alarm or control	Alarm or control	Alarm or control	Alarm or control	
2	K1 B	Relay 1 Normally Closed (7ME39400AL01 only)			functions set by CH 1	functions set by CH 1	functions set by CH 3	functions set by CH 3
3	K1 C	Relay 1 Common						
4	GND	Digital Return [GND]	GND	GND	GND	GND	GND	
5	K2 A	Relay 2 Normally Open	Relay 2	Alarm or control	Alarm or control	Alarm or control	Alarm or control	
6	K2 B	Relay 2 Normally Closed (7ME39400AL01 only)		functions set by CH 1	functions set by CH 1	functions set by CH 3	functions set by CH 3	
7	K2 C	Relay 2 Common						
8	K3 A	Relay 3 Normally Open	Relay 3	Alarm or control	Alarm or control	Alarm or control	Alarm or control	
9	K3 B	Relay 3 Normally Closed (7ME39400AL01 only)			functions set by CH 1	functions set by CH 2	functions set by CH 3	functions set by CH 3
10	K3 C	Relay 3 Common						
11	GND	Digital Return [GND]	GND	GND	GND	GND	GND	
12	K4 A	Relay 4 Normally Open	Relay 4	Alarm or control	Alarm or control	Alarm or control	Alarm or control	
13	K4 B	Relay 4 Normally Closed (7ME39400AL01 only)		functions set by CH 1	functions set by CH 2	functions set by CH 3	functions set by CH 3.	
14	K4 C	Relay 4 Common						

Appendix

Note

Relays shown in Power OFF position, which is the same as the alarm assertion position. *7ME39400AL00 Mercury Relay only available with Normally Open.

Terminal Block Wiring - 7ME39400AL03 and 7ME39400AL04 Expanded I/O Module

(Refer to manual drawing 1010N-7-7 sheet 2 of 2)

These connection diagrams apply to the part numbers listed below.

	1010N-7-7 (Sheet 2 of 2) Drawing			
FUS1010	7ME3530, 7ME3533			
FUE1010	7ME3500			
FUH1010	Not Used			

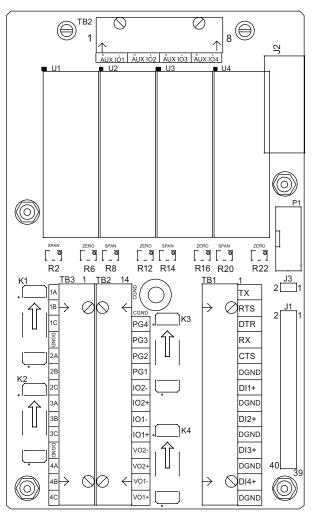
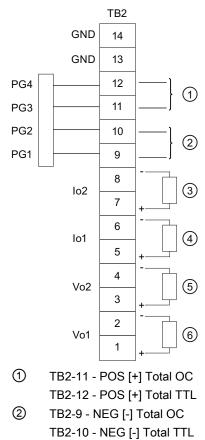
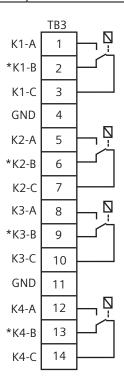



Figure A-2 7ME39400AL03 and 7ME39400AL04 Expanded I/O Module

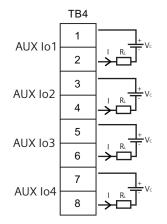
Pin#	Signal	Definition	Description	Function
				Dual/Quad Path Only
14		Chassis Ground	Chassis Ground	Cable Shield Terminations
13		Chassis Ground	Chassis Ground	Cable Shield Terminations
12	PG4	GND	0-5000 Hz frequency output,	GND
11	PG3	TTL	assignable	5V TTL
10	PG2	GND		GND
9	PG1	TTL		5V TTL
8	lo2 (-)	Isolated Return	Flow meter process variables	System outputs assignable & scalable
7	lo2 (+)	4-20mA Output 2	assigned to individual outputs	to flow related parameters.
6	lo1 (-)	Isolated Return	under menu control.	4-20mA outputs also provide a fault
5	lo1 (+)	4-20mA Output 1		indication by dropping to 2mA if assigned to flow rate and under fault
4	Vo2-	Ref. Ground		conditions.
3	Vo2+	0-10 Volt Output]	
2	Vo1-	Ref. Ground]	
1	Vo1+	0-10 Volt Output		


Table A- 5	Input/Output Wiring	TB2) - 7ME39400AL03 and 7ME39400AL04 Ex	manded I/O Module
	input/output winnig		

- ③ 4-20mA Load 1k ohm (max)
- 4-20mA Load 1k ohm (max)
- (5) 0-10V Load 10k ohm (min)
- 6 0-10V Load 10k ohm (min)

Pin#	Signal	Definition	Description	Function Dual Path Only	Function Quad Path Only
1	K1 A	Relay 1 Normally Open	Relay 1	Alarm or control functions	Alarm or control
2	K1 B	Relay 1 Normally Closed		set by CH 3	functions set by
		(7ME39400AL04 only)			CH5
3	K1 C	Relay 1 Common			
4	GND	Digital Return (GND)	DGND		
5	K2 A	Relay 2 Normally Open	Relay 2	Alarm or control functions	Alarm or control
6	K2 B	Relay 2 Normally Closed		set by CH 3	functions set by
		(7ME39400AL04 only)			CH5
7	K2 C	Relay 2 Common			
8	K3 A	Relay 3 Normally Open	Relay 3	Alarm or control functions	Alarm or control
9	K3 B	Relay 3 Normally Closed		set by CH 3	functions set by
		(7ME39400AL04 only)			CH5
10	K3 C	Relay 3 Common			
11	GND	Digital Return (GND)	DGND		
12	K4 A	Relay 4 Normally Open	Relay 4	Alarm or control functions	Alarm or control
13	K4 B	Relay 4 Normally Closed		set by CH 3	functions set by
		(7ME39400AL04 only)			CH5
14	K4 C	Relay 4 Common			

Table A- 6 Input/Output Wiring (TB3) - 7ME39400AL03 and 7ME39400AL04 Expanded I/O Module	Table A- 6	Input/Output Wiring (TE	3) - 7ME39400AL03 and	d 7ME39400AL04 Expanded I/O Module
--	------------	-------------------------	-----------------------	------------------------------------


Note

Relays shown in Power OFF position, which is the same as the alarm assertion position. *7ME39400AL03 Mercury Relay only available with Normally Open.

Pin#	Signal	Definition	Description	Single CH Function	Dual CH Function	Dual Path Function	Dual Path Only Function	Quad Path Only Function
1	AUX 101+	Isolated Loop Supply Io1	lo1 External Power	+30V max.	supply volta	ige allowed	Not	Used
2	AUX 101-	lo1 4-20mA Output	lo1 Signal	Same output assignment as TB2-9				
3	AUX 102+	Isolated Loop Supply Io2	lo2 External Power	+30V max. supply voltage allowed				
4	AUX 102-	lo2 4-20mA Output	lo2 Signal	Same output assignment as TB2-11				
5	AUX 103+	Isolated Loop Supply Io3	lo3 External Power	scalable to flow related parameters. 4-20mA outputs also provide a fault indication by dropping to 2mA if		+30V max. Same as TB2-1		
6	AUX 103-	lo3 4-20mA Output	lo3 Signal					
7	AUX 104+	Isolated Loop Supply Io4	lo4 External Power			+30V max. S	Same as TB2-3	
8	AUX 104-	lo4 4-20mA Output	lo4 Signal					

Note

Auxiliary 4-20mA loops are assigned and spanned under menu control of Vo and PGEN outputs.

Vc: 24 VDC typical (+15VDC to 30VDC max) Loop Supply

R_L: 1000 ohms max, = Loop wire resistance plus user's input load resistance I: 4-20mA

Terminal Block Wiring - 7ME39400AL04 Expanded I/O Module

(Refer to manual drawing 1010N-7-7 sheet 2 of 2)

These connection diagrams apply to the part numbers listed below.

	1010N-7-7 (Sheet 2 of 2) Drawing		
FUH1010	7ME3600, 7ME3603		
FUS1010	Not Used		
FUE1010	Not Used		

Appendix A.2 I/O Connections and Wiring

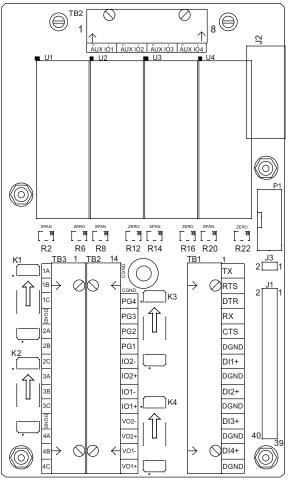
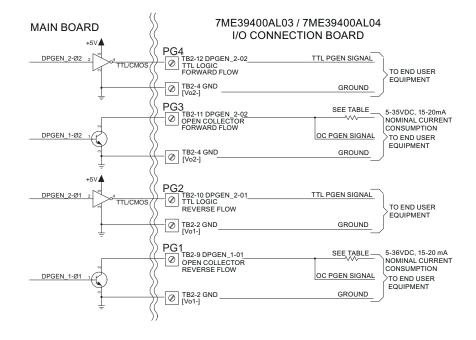



Figure A-3 7ME39400AL04 Expanded I/O Module

Pin#	Signal	Definition	Description	Function
				Dual/Quad Path Only
14		Chassis Ground	Chassis Ground	Cable Shield Terminations
13		Chassis Ground	Chassis Ground	Cable Shield Terminations
12	PG4	POS [+] Total TTL	Totalizer Pulses, scalable	POS [+] Total TTL
11	PG3	POS [+] Total OC		POS [+] Total OC
10	PG2	NEG [-] Total TTL		NEG [-] Total TTL
9	PG1	NEG [-] Total OC		NEG [-] Total OC
8	lo2 (-)	Isolated Return	Flow meter process variables	System outputs assignable & scalable
7	lo2 (+)	4-20mA Output 2	assigned to individual outputs	to flow related parameters.
6	lo1 (-)	Isolated Return	under menu control.	
5	lo1 (+)	4-20mA Output 1	4-20mA outputs also provide a fault indication by dropping	OC = Open Collector
4	Vo2-	Ref. Ground	to 2mA if assigned to flow	
3	Vo2+	0-10 Volt Output	rate and under fault	
2	Vo1-	Ref. Ground	conditions.	
1	Vo1+	0-10 Volt Output		

Table A- 9	Input/Output Wiring (TB2) - 7ME39400AL04 Expanded I/O Module
------------	--

A.2 I/O Connections and Wiring

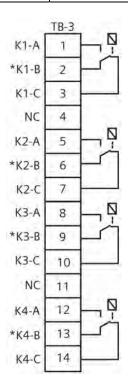
User Supply Voltage (VDC)	External Resistor (Ohms)	Expected Current Draw (mA)	Recommended Resistor Wattage (Watts)
5	270	18.5	1/2
9	510	17.6	1/2
12	680	17.6	1/2
18	1000	18	3/4
24	1500	16	1
28	1800	15.5	1 1/4
36	2400	15	1 1/4

Table A-10 Open Collector User Resistor Recommendations

Note

TB2-9 and TB2-11 are Open Collector Outputs that require external pull-up resistors for operation. See table for External Supply Voltage and suggested resistor value and ratings. Maximum current into the transistor is 100mA. Maximum Voltage is +36 VDC.

NOTICE


Transistor Damage

Negative voltages with respect to ground will permanently damage transistors.

Use caution when applying power to circuit boards.

Pin#	Signal	Definition	Description	Function Dual Path Only	Function Quad Path Only
1	K1 A	Relay 1 Normally Open	Relay 1	Alarm or control	Alarm or control
2	K1 B	Relay 1 Normally Closed (7ME39400AL04 only)		functions set by CH 3.	functions set by CH 5.
3	K1 C	Relay 1 Common			
4	GND	Digital Return (GND)	DGND	-	
5	K2 A	Relay 2 Normally Open	Relay 2	Alarm or control	Alarm or control
6	K2 B	Relay 2 Normally Closed (7ME39400AL04 only)		functions set by CH 3.	functions set by CH 5.
7	K2 C	Relay 2 Common			
8	K3 A	Relay 3 Normally Open	Relay 3	Alarm or control	Alarm or control
9	K3 B	Relay 3 Normally Closed (7ME39400AL04 only)	functions set by CH 3.		functions set by CH 5.
10	K3 C	Relay 3 Common			
11	GND	Digital Return (GND)	DGND	-	
12	K4 A	Relay 4 Normally Open	Relay 4	Alarm or control	Alarm or control
13	K4 B	Relay 4 Normally Closed (7ME39400AL04 only)		functions set by CH 3.	functions set by CH 5.
14	K4 C	Relay 4 Common			

Lable A- 11 Input/Output Wiring (TB3) - /ME39400AL04 Expanded I/O Modul	Table A- 11	Input/Output Wiring (TB3) - 7ME39400AL04 Expanded I/O Module
---	-------------	--

Note

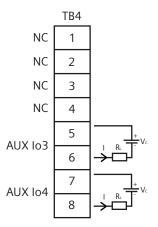

Relays shown in Power OFF position, which is the same as the alarm assertion position. *7ME39400AL03 Mercury Relay only available with Normally Open.

Table A- 12	Input/Output Wiring (TB4) - 7ME39400AL04 Expanded I/O Module
-------------	--

Pin#	Signal	Function	Description
1		No Connection	
2		No Connection	
3		No Connection	
4		No Connection	
5	AUX 103+	Isolated Loop Supply	Connect +30V max. Loop Supply here
6	AUX 103-	Loop-Powered 4-20mA	PGEN 1 Data Presented as 4-20mA
7	AUX 104+	Isolated Loop Supply	Connect +30V max. Loop Supply here
8	AUX 104-	Loop-Powered 4-20mA	PGEN 2 Data Presented as 4-20mA

Note

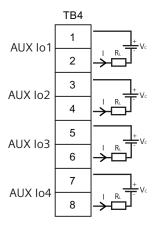
Auxiliary 4-20mA loops are assigned and spanned under menu control of Vo and PGEN outputs.

Vc: 24 VDC typical (+15 VDC to +30 VDC max) Loop Power

R_L: 1000 ohms (max), Loop wire resistance plus user's input load resistance I: 4-20mA

Terminal Block Wiring - 7ME39406ML00 I/O Module (4-Channel)

FUS1010, 7ME35309 only


(Refer to manual drawing 1010N-8MS2-7 (sheet 2 of 2)

Pin#	Signal	Function	Description
1	lout 1+	Isolated Loop Supply	4-20mA proportional to spanned,
2	lout 1-	Isolated Loop Return	selected variable (loop power).
3	lout 2+	Isolated Loop Supply	4-20mA outputs also provide a fault
4	lout 2-	Isolated Loop Return	indication by dropping to 2mA if assigned to flow rate and under fault
5	lout 3+	Isolated Loop Supply	conditions.
6	lout 3-	Isolated Loop Return	
7	lout 4+	Isolated Loop Supply	
8	lout 4-	Isolated Loop Return	

Table A- 13 Input/Output Wiring (TB3) - 7ME39406ML00 I/O Module (4-Channel)

Note

Flow meter requires external power supply. Shunt as shown. Current is controlled within loop. 4-20mA inputs and outputs are isolated.

Vc = +30V (max) Loop Supply 1k ohm (max)

Terminal Block Wiring - 7ME39404SB00 - Analog Input Module - 2 Channel/Dual Path

(Refer to manual drawing 1010N-5DS2-7)

These connection diagrams apply to the part numbers listed below.

Table A- 14 Connection Diagrams and Part Numbers

	1010N-5DS2-7 Drawing		
FUS1010	7ME3530, 7ME3533		
FUE1010	7ME3500		
FUH1010	7ME3600, 7ME3603		

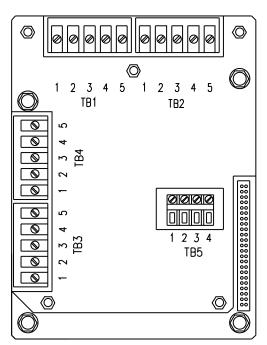


Figure A-4 7ME39404SB00 Analog Input Module

Note

Use 1012ECN series cables to connect between temperature sensor input wiring terminals TB1 through TB4 and 991T or 1011T series temperature sensors. Note Supply and Return temperature sensor designations when used with FUE1010 series energy flowmeter.

Note

Alternate color codes for certain 1012EC cables: White = Orange Green = Brown

Dual Path)

Pin	Color	Function	Description	Wiring/Cable
TB1-1	Black	RTD Current High	RTD Temperature measurement T1 or	AWG. 14 - 24 /
TB1-2	White	RTD Voltage High	Channel 1 Ts (Supply Temperature)	1000 Ft max w/o
TB1-3	Green	RTD Voltage Low		factory approval
TB1-4	Red	RTD Current Low		
TB1-5	Blue	Ground		

Table A- 16 Input/Output Wiring TB2 7ME39404SB00 - Analog Input Module (2 Chan/Dual Path)

Pin	Color	Function	Description	Wiring/Cable
TB2-1	Black	RTD Current High	RTD Temperature measurement T2 or	AWG. 14 - 24 /
TB2-2	White	RTD Voltage High		1000 Ft max w/o
TB2-3	Green	RTD Voltage Low		factory approval
TB2-4	Red	RTD Current Low		
TB2-5	Blue	Ground		

Table A- 17 Input/Output Wiring TB3 7ME39404SB00 - Analog Input Module (2 Chan/Dual Path)

Pin	Color	Function	Description	Wiring/Cable
TB3-1	Black	RTD Current High	RTD Temperature measurement T3 or	AWG. 14 - 24 /
TB3-2	White	RTD Voltage High	Channel 2 Ts (Supply Temperature)	1000 Ft max w/o
TB3-3	Green	RTD Voltage Low		factory approval
TB3-4	Red	RTD Current Low		
TB3-5	Blue	Ground		

Table A- 18 Input/Output Wiring TB4 7ME39404SB00 - Analog Input Module (2 Chan/Dual Path)

Pin	Color	Function	Description	Wiring/Cable
TB4-1	Black	RTD Current High	RTD Temperature measurement T4 or	AWG. 14 - 24 /
TB4-2	White	RTD Voltage High	Channel 2 Tr (Return Temperature)	1000 Ft max w/o
TB4-3	Green	RTD Voltage Low		factory approval
TB4-4	Red	RTD Current Low		
TB4-5	Blue	Ground		

Pin	Function	Use	Description	Behavior	Load	Wiring/Cable
TB5-1	AUX. 1 IN	lin1 Input	Analog current	4 to 20 mA	200 Ω	AWG. 14-24 /
TB5-2	AUX. 1 COM	lin1 Common	input			100 ft. max. w/o
TB5-3	AUX. 2 IN	lin2 Input	referenced to meter ground			factory approval
TB5-4	AUX. 2 COM	lin2 Common				

Table A- 19 Input/Output Wiring TB5 7ME39404SB00 - Analog Input Module (2 Chan/Dual Path)

Net load is 335 ohms when safety barriers are used.

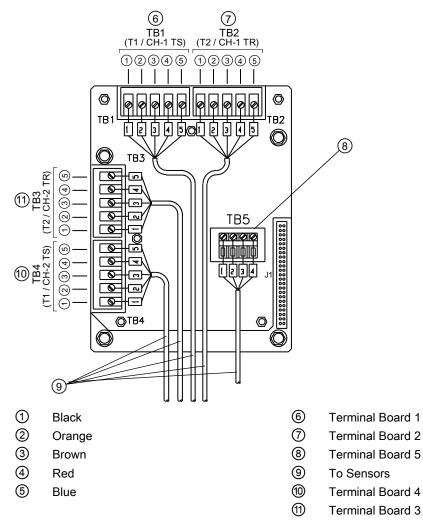


Figure A-5 Temperature Sensor Inputs

Terminal Block Wiring - 7ME39400SA00 - Analog Input Module - Single Channel

(Refer to manual drawing 1010N-5S2-7)

These connection diagrams apply to the part numbers listed below.

Table A- 20 Connection Diagrams and Part Numbers

1010N-5S2-7 Drawing				
FUS1010	7ME3530, 7ME3533			
FUH1010	7ME3600, 7ME3603			

Figure A-6 7ME39400SA00 - Analog Input Module

Table A- 21	Input/Output Wiring TB1	7ME39400SA00 - Analog Input Module
-------------	-------------------------	------------------------------------

Pin	Color	Function	Description	Wiring/Cable
TB1-1	Black	RTD Current High	RTD Temperature measurement T1 or	AWG. 14 - 24 /
TB1-2	White	RTD Voltage High	Channel 1 Ts (Supply Temperature)	1000 Ft max w/o
TB1-3	Green	RTD Voltage Low		factory approval
TB1-4	Red	RTD Current Low		
TB1-5	Blue	Ground		

A.2 I/O Connections and Wiring

Pin	Color	Function	Description	Wiring/Cable
TB2-1	Black	RTD Current High	RTD Temperature measurement T2 or	AWG. 14 - 24 /
TB2-2	White	RTD Voltage High	Channel 1 Tr (Return Temperature)	1000 Ft max w/o
TB2-3	Green	RTD Voltage Low		factory approval
TB2-4	Red	RTD Current Low		
TB2-5	Blue	Ground		

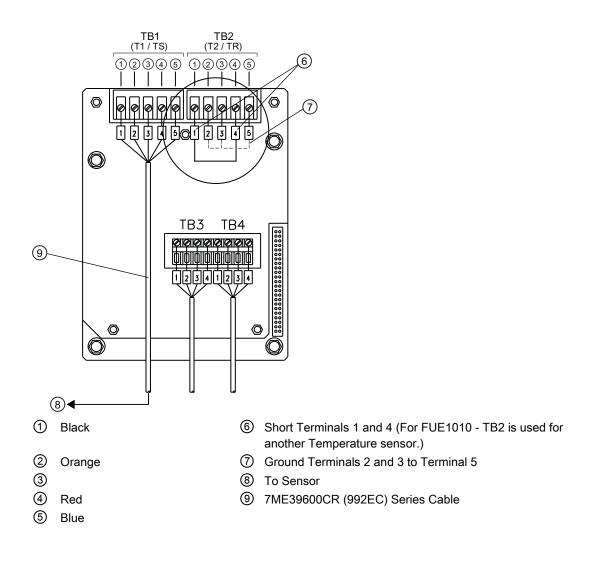

Table A- 22 Input/Output Wiring TB2 7ME39400SA00 - Analog Input Module

Table A- 23 Input/Output Wiring TB3 and TB4 7ME39400SA00 - Analog Input Module

Pin	ТВЗ	TB4 Function	Use	Description	Behaviour	Load	Wiring
	Function						
1	AUX. 1 IN	AUX. 3 IN	lin1 Input	Analog	4 to 20mA	200Ω	305 meters
2	AUX. 1 COM	AUX. 3 COM	lin1 Common	current input			(1000 ft.)
3	AUX. 2 IN	AUX. 4 IN	lin2 Input	referenced to meter			Max w/o factory
4	AUX. 2 COM	AUX. 4 COM	lin2 Common	ground.			approval

Net load is 335 ohms when safety barriers are used.

A.3 RS-232 Connection

A.3 RS-232 Connection

The hardware and software requirements for programming the SITRANS F-1010 models require a PC connected to the RS-232 serial port. The serial interface cable includes 9-pin and 25-pin connectors to accommodate both types of IBM-compatible serial ports. A PC communication program such as Si-Ware (download program at: http://s13.me/ns/cv) or HyperTerminal (Windows 95/98/NT/2000/XP) serves as the data entry interface. These programs reproduce the menu screens that would appear on the system's graphic screen. Once the serial interface is established you can choose to program a graphic display system using a PC and a communications program. However, note that the serial interface cable is an option.

Note

You can use a DOS-based communications program also. Make sure that your PC is loading the ANSI.SYS driver via your Config.sys file. Set the program's RS-232 parameters to match those of the flow meter (see HyperTerminal example screen on the following pages).

Note

Many newer Laptop PCs are not equipped with serial ports and only have USB ports. These PCs will require a USB RS-232 adaptor that can be purchased commercially.

The RS-232 Interface Cable

The physical connection between the flow meter and your PC is accomplished using a serial interface cable, part number: 1015CPC-N. The schematic below shows the configuration of the cable. The wire ends for the flow meter termination are tinned for easy insertion into TB1 on the flow meter. Each wire is labeled to identify the correct terminal pin on TB1. In addition, both connectors have their CTS pin shorted to the RTS pin (pins 4 - 5 on 25-pin connector and pins 7 - 8 on 9-pin connector) and this eliminates the need for hardware "handshaking."

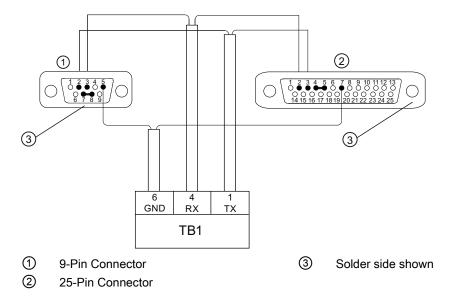


Figure A-7 1015CPC-N Serial Interface Cable

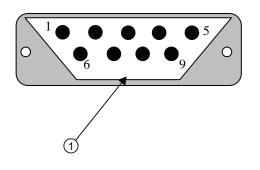
Due to the different SITRANS F 1010 flow meter configurations, there are 3 types of RS-232 communication cables employed. You can determine which cable is required for your model flow meter from the table below. Be sure you have the appropriate cable available for use.

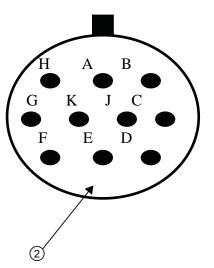
For those who would prefer to make the cables themselves, the required parts (except for the RS-232 connector for the FUP1010WP flow meter types) should be available at most computer or electronics stores. You will find drawings of the terminations for these cables with the reference table below. It provides the signal names, PC termination and SITRANS F 1010 flow meter termination for each type of flow meter.

Flow meter Type	Cable Type	Siemens Part Number	Notes
Weatherproof Portable	DB-9F - Amphenol	CQO:1015CPC-WP	Except Energy Flow meter
FUE1010/FUP1010	DB-9F - DB-9F	CQO:1015CPC-P	Use for Energy WP
All NEMA 4X	DB-9F - 3 Wire	CQO:1015CPC-N	

Flow meter Type	Cable Type	Siemens Part Number	Notes
NEMA 4X with Expanded I/O Module	DB-9F - DB-9F	CQO:1015CPC-P	For FUS1010 N with A1 option (1010N-7 module)
FUS1010 NEMA 7 Compact	DB-9F - 3 Wire	CQO:1015CPC-N	

Also, in most computer stores or online, you will be able to find or you may already have a serial "LapLink" cable or "Null Modem" cable. These cables can be used to communicate with the 1010P/DP systems.


If you purchased a 1010W model, you may have received the special connector used for the RS-232 terminal in a packet included with your 1010W. This will enable you to construct the appropriate cable for this flow meter type.


If you prefer to construct your own cable, the following conventions apply in the table:

- PC: Refers to an IBM compatible, DB-9 serial Com port.
- FUS1010 NEMA 4: Includes all models (N, DN, MN, FUE, EXCEPT those with "A1" option). Termination is made to the 1010N-2 I/O Data Module. Flow meter end of cable is un-terminated wire.
- FUS1010 NEMA 4 With "A1" Option: Flow meters that carry "A1" option have 1010N-7 module installed that houses a DB-9 connector for RS-232 communication.
- FUP1010 IP67: Includes all models (P/DP). Termination is made to the RS-232 port DB-9 connector. A DB-9 Female connector is needed to mate with the flow meter connector.
- FUP1010 WP: Includes all models (WP, WDP except energy meters). Termination is made to the RS-232 port on the connector panel. A special cable terminal is required and can be obtained from Siemens (Part #1015XWP).
- FUS1010X Compact: Includes all models (X, DX). Termination is made to the 1010X-8 I/O module Terminal TB2. Flow meter end of cable is un-terminated wire.

Signal Name	PC DB-9 Terminal	1010P	1010WP	1010N	1010X
	Terminal	Terminal	Terminal	Terminal	Terminal
Ground	Pin 5	Pin 5	Pin E	TB1-pin 6	TB2-pin 16
Тх	Pin 2	Pin 3	Pin C	TB1-pin 1	TB2-pin 11
Rx	Pin 3	Pin 2	Pin B	TB1-pin4	TB2-pin 14

Appendix A.3 RS-232 Connection

 PC DB-9 Connector 1010P/990P Connector (Wiring Side View)
 1010WP/WDP Connector (Wiring Side View)

Communicating with SITRANS F 1010 Systems via the RS-232 Interface

The following sections assume that you are familiar with the basics of using Windows 95/98/NT/2000/XP based communications program. All PC computers provide at least one serial port using either a 9-pin or 25-pin D-type connector. The port designation can be either COM 1 or COM 2. Usually, when a computer includes two serial ports, COM 1 will be the 9-pin connector and COM 2 will be the 25-pin connector. However, port designations can vary from manufacturer to manufacturer, so you will have to positively identify the COM port you wish to use for the flow meter interface. Connect the cable between the flow meter and your PC using the 25-pin, 9-pin or USB to RS-232 adapter connector, depending upon the port's architecture.

A.3 RS-232 Connection

How to use the Windows HyperTerminal Program

Note

Si-Ware

If you want to use the Si-Ware program instead of HyperTerminal, download the program at [http://s13.me/ns/cv] and follow the setup instructions.

Windows provides a communication program called HyperTerminal, which is ideal for interfacing your computer with the flow meter. The following typical example explains how to set up HyperTerminal.

Note

Depending upon the Windows applications being used this setup procedure may vary.

- 1. From the Windows desktop, left-click on the [START] button.
- Holding down the left mouse button, move the highlight up to [Programs], then across to [Accessories]. Slide the highlight down to [HyperTerminal], then release the left mouse button.
- 3. Within the HyperTerminal window, move the mouse pointer down to [Hyperterm.exe] and then double-click the left mouse button.
- 4. This selects the [Connection Description] dialog box. Enter a name for your connection (e.g., 1010N). You can optionally select an icon for this connection by clicking on one of the icons displayed in the scrolling frame at the bottom of the window. Click [OK].
- 5. This selects the [Phone Number] dialog box. Move the cursor to the arrow at the right of the [Connect Using] field. Left click on the arrow to expand the field and then move the highlight down to [Direct to Com 1 (or 2)] depending on the port connected to the interface cable. Click [OK] to select the [Com 1 (or 2) Properties] Dialog box. Set up your RS-232 parameters as shown in the example below. Left-click on the [OK] button.

Bits per second; 9600	Ð
Data bits: 7	-
Parity: Ddd	•
Stop bits: 1	
Elow control: None	·

- 6. You will now see a blank terminal screen. Next left-click [File] on the top menu bar. Drag the highlight down to [Properties] and then left-click.
- Left-click the [Settings] tab. Expand the [Emulation] box by left-clicking the <Down Arrow>
 on the right-hand side. Drag the highlight down to [VT-100] and then left-click to select it
 (as shown below).

Terminal ke	va O Windowskeys	
	Ya C Muldows y Bys	
Emulation: VT100	Terroinal Selup.	
Backscröll buffer lit 500	ness: 	
C Reep three tim	es when connecting or disconnecting.	
	as moneously of accordiocard.	

8. Next, left-click on the [ASCII Setup] button (see screen above). In the [ASCII Sending] dialog box, make sure that both [send line ends with line feeds] and [Echo Typed characters locally] are UNCHECKED. In the [ASCII Receiving] dialog box, left-click to place a check mark before the [Append line feeds to incoming line ends] dialog. When your screen looks like the example below, left-click the [OK] button.

Send line ends with line feeds Echo typed characters locally. Line delay: 0 milliseconds. Character delay: 0 milliseconds. ASCII Receiving Append line feeds to incoming line end		
Line delay: 0 milliseconds: Character delay: 0 milliseconds. ASCII Receiving —	Echo typed characters lo	
Character delay: 0 milliseconds.		cally
ASCII Receiving	Line delay: 0 millisec	onds.
ASCII Receiving	Character delay: 0 m	illiseconds.
 Eorce incoming data to 7-bit ASCII Wrap lines that exceed terminal width 	 Append line feeds to inco Force incoming data to 7- 	bit ASCII

- 9. You are now ready to communicate with the 1010 flow meter. But first, save your settings by moving the mouse cursor to [File], sliding the cursor to [Save], then clicking [OK] on the Save dialog box.
- 10. The next time you want to use HyperTerminal:

A.3 RS-232 Connection

- Click on Start.
- Drag to Programs.
- Drag to Accessories. Drag to HyperTerminal, and click.
- Double-click the icon you selected for the connection.

Note

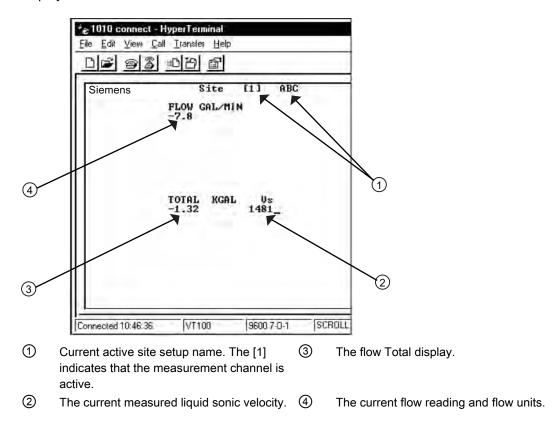
For easier access, create a shortcut to the connect icon from your desktop. Right-click on the icon to open its dialog box. Left-click on [Copy] or [Create a Short Cut] and then move the mouse cursor to a blank area on your desktop. Right-click to open dialog box and then left-click on [Paste] to place a shortcut to the connect icon on your desktop.

Accessing the Installation Menu

Once the parameters are set, HyperTerminal automatically initiates Command mode. You will see a blank screen.

- 1. Press <Enter> a few times until you see [? For Help] on the screen.
- 2. Type: ? (question mark) and then press <Enter> to see a list of the available commands.

Use the MENU command (type Menu and then press <Enter>) to access the top level of the Installation Menu. You will see a screen similar to the example below.


Dual Path [1]	Path 1
be	
>Dual Path Flow	
	De

Note

To facilitate connecting through modems, the [Menu] command times out after three minutes of inactivity. To maintain a longer connection type: Menu 1000 and press <Enter>. The optional number is the amount in minutes that the connection will be maintained. Typing [Menu 1000] essentially keeps the interface active until you cancel it.

Data Display Mode

After you complete the installation, you can toggle between Installation Menu mode to Data Display mode. This is the same as using the <MENU> key on the keypad (see manual). The PC keyboard equivalent to the <MENU> key is <CTRL> + <L>. Note that the RS-232 interface does not support graphics. Therefore, when you use HyperTerminal to view the data display screens, you will see the same data in alphanumeric form only (as shown below). You can still use the <Up Arrow> and <Down Arrow> to switch between available display screens.

A.3 RS-232 Connection

Navigating through the Installation Menu

After accessing the Installation Menu, you can begin to setup your flow meter according to the instructions in this manual. The chart below shows the PC keyboard equivalents to the keypad keys while you are in the menu.

SITRANS F 1010 Keypad	PC Keyboard	Description
<up arrow=""></up>	<up arrow=""></up>	Move up 1 menu cell (or Flow Display screen)
<down arrow=""></down>	<down arrow=""></down>	Move down 1 menu cell (or Flow Display screen)
<right arrow=""></right>	<right arrow=""></right>	Move right 1 menu cell (or Flow Display screen)
<left arrow=""></left>	<left arrow=""></left>	Move left 1 menu cell (or Flow Display screen)
<menu></menu>	^L (Ctrl L)	Toggle between Menu and Flow Display
<datalog></datalog>	^D (Ctrl D)	Generate Datalogger report
<clr></clr>	<backspace> or </backspace>	Deselect list selection
<alt+up arrow=""></alt+up>	^U (Ctrl U)	Logger Display Page Advance
<+/-> (chg sign)	(bar, shift + backslash)	Change numeric sign. Can also type (-) key
<enter></enter>	<carriage return=""></carriage>	Enter Key
Digits	Digits	Numerals zero through 9
/	1	Divide by
х	* (upper case 8)	Multiply by
+	+	Plus
-	-	Minus
=	=	Equals
		Decimal Point

Terminal Mode Menu Commands

In addition to Menu, the following commands (followed by the <Enter> key) can be used to control the flow meter while in Terminal Mode.

Note

The "n" refers to the flow meter Channel number. For a 2-Channel Arithmetic site (Ch1 + Ch2 or Ch1 – Ch2) the virtual Channel is number 3.

Logger

Invokes the download of all data stored in the Datalogger. Note that the Datalogger data is not erased from the flow meter memory when it is downloaded. It is recommended to capture this information into a file with a "csv" extension, which can be easily imported into MS Excel.

SITE	Invokes a full site download for a single channel or multi-path 1010 flow meter.
SITE "n"	Invokes a site download for channel "n", where "n" = the Channel # (1, 2, 3, 4, etc.).
DP "n"	Commands the flow meter to download the digitized receive signal data for Channel or Path "n".
CLRTOT	Clears the Totalizer for a single channel or multi-path 1010 flow meter.
CLRTOT "n"	Clears the Totalizer for Channel "n" of a multi-channel flow meter.
Lf on	Turns on the Line Feed at the end of any text string sent by the flow meter.
Lf off	Turns off the Line Feed at the end of any text string sent by the flow meter.
?	Provides a list of available Terminal Mode flow meter commands.
Transferring info	rmation from a 1010 flow meter to the PC
	With HyperTerminal active:
	1. Point to [Transfers], and click.
	2. Select [Capture Text].
	3. Select desired drive path or directory, enter a file name, and click the Start button.
	4. Use the following conventions for data file names:
	 For site data or Wave shape data: filename.txt
	 For Datalogger data: filename.csv On the DC type the preper command for the data desired (Leager Site or DD) and then
	5. On the PC type the proper command for the data desired (Logger, Site, or DP) and then press [Enter] key.
	6. The data should begin streaming on the HyperTerminal screen.

A.3 RS-232 Connection

- 7. Wait for EOT (End Of Transmission) to be displayed.
- 8. Close the file by pointing to Transfer, drag to Capture Text and click Stop button.

Closing the Terminal or HyperTerminal Program

You may now close the Terminal program. The file(s) you have downloaded are now saved in the location you selected. You may now import the file you have saved into the appropriate program (i.e. MS Word for site data, or MS Excel for Datalogger or wave shape data for graphing or analysis).

The Datalogger contains data that has its fields separated by commas. By using the file extension ".csv" (comma separated values) suggested earlier, the data will import directly into MS Excel without any further modification. For the wave shape data, the fields are separated by spaces, therefore, it is best to save those files as .txt and then use the MS Excel Import Wizard to select "Space Delimiters" for importation of the data.

Site data is downloaded in plain text and can be imported directly into MS Word.

Reset Procedure for Blind Systems

SITRANS F 1010 Blind systems allow you to perform a system reset via the RS-232 interface. The following instructions require the flow meter to be connected serially to a PC.

Note

Custom RS-232 settings for baud rate, parity and data bits may not be preserved. Therefore, be prepared to set your communications program back to the default (9600, Odd, 7) settings.

To Clear Active Memory using the RS-232 Interface

- 1. Turn off power (if it is currently on). Turn power on. As soon as you apply power, immediately type the @ character three times. The prompt: [Clr Active Memory? No] appears at the top of the screen.
- Press the <Right Arrow> and then the <Down Arrow> to switch the option list to: [Clr Active Memory? Yes] Press <ENTER> to clear all Active Site Data (but not saved site setups).
- To restore operation, press <MENU> to access the Installation Menu. Create a new site setup or recall a stored site setup. Re-select any Meter Facilities items (e.g., RS-232 setup parameters).

To Clear All Saved Data using the RS-232 Interface

NOTICE

Loss of RAM Data

Before proceeding further it is essential to understand that this function eliminates ALL data stored in RAM. This means that all saved site setups including the site data of a flow-calibrated site will be erased! In addition, the entire Datalogger file plus any custom factory or user-created pipe or sensor tables will be eliminated.

The impact of this is such that we strongly recommend that you consult Technical Services before continuing with this procedure. Be aware that you will have to create a new Site Setup, re-enter all site specific parameters including pipe or sensor tables, plus all desired Meter Facilities menu entries.

- 1. Turn off power (if it is currently on).
- 2. Turn the power on. As soon as you apply power, type the @ character three times.
 - The prompt: **[Clr Active Memory?]** appears at the top of the screen. Press the <Down Arrow>.

Note

Note that the prompt switches to [Cir Saved Data? No].

- 3. Press the <Right Arrow> and then the <Down Arrow> to switch the option list to: [Clr Saved Data? Yes].
- 4. Press <ENTER> to clear all Saved Site Data, Datalogger Data, user created Pipe Data and Sensor Data.
- To restore operation, press <MENU> to access the Installation Menu. Create a new site setup or recall a stored site setup. Reselect any Meter Facilities items (e.g., RS-232 setup parameters).

A.4 Flowrate Calibration and Calibration Tables

Flowrate Calibration Methods

SITRANS F 1010 equipment provides three ways to condition the calibration performance of its flowrate output: Intrinsic (factory set), Kc, and Calibration Tables 1 through 3. Access to these calibration options is found in the [Calibrate Flowrate] menu cell and the three [Calib. Table] menu cells of the [Span/Set/Cal] menu.

Intrinsic

When selected, the flow meter uses no slope adjustment at all. Output data is still zeroed and corrected for Reynolds number, but no slope adjustment is imposed on the flow meter's flow register.

A.4 Flowrate Calibration and Calibration Tables

Some applications may require an output adjustment to match an official external reference. The [Calibrate Flowrate] menu allows you to select a calibration mode. The right-hand column shows the active calibration mode. You can select Intrinsic (factory) and Kc (Slope Correction) Calibration. Selecting either of the external calibration modes will not eliminate the Intrinsic (factory) calibration. You can use this menu cell to switch between Intrinsic and Kc at any time.

Kc Calibration

For most applications, the measured flow range produces a linear meter response. Therefore, the Kc (slope correction) calibration is the preferred method since it only requires a single correction factor for all the flow rates encountered.

Note

Changing the calibration can cause profound changes in flow meter operating characteristics. Use only the most respected flow standard to obtain a correction factor. The percentage entered must provide an accurate and consistent shift across the entire flow range anticipated for the application.

Kc Factor

To obtain the Kc factor, compare flow total data taken simultaneously from the flow meter and a reference meter whose accuracy meets the required standard. Allow both meters to accumulate flow total data long enough to average out any differences due to flow fluctuation between the two meter locations. Compare outputs of the two totalizers to determine percentage increase (+) or decrease (-) that is necessary to produce the best average correlation between the flow meter and the reference standard.

Selecting the Kc Factor

When the [Kc] menu cell is selected, the flow meter imposes this percentage slope adjustment of its rate output. Output data is zeroed and corrected for the Reynolds number (flow profile compensated), however, a percent change in the rate output is imposed based on the data entered in this cell. The number entered by the user is evaluated into a slope correction factor by dividing it by 100 and algebraically adding it to 1. The resulting factor is used as a multiplier on the rate register of the instrument. Thus an entry of -3% will multiply the rate register by 0.97, for example.

To calculate Kc:

$$Kc = \begin{bmatrix} Actual Rate \\ Indicated Rate & -1 \end{bmatrix} \times 100$$

A.4 Flowrate Calibration and Calibration Tables

To enter the Kc Factor

- 1. To enable numeric entry press <Right Arrow>.
- 2. Use the numeric keys to type the required Kc (as calculated above). Note that the Kc value can be negative or positive. Enter the or + sign first, then type in the calibrated value.
- 3. To store the data press <ENTER>. Note that Kc now appears in the right-hand column of the [Calibrate Flow Rate] menu cell with its new value. Also note that this Kc value can be viewed on the site printout.

Calibration Tables 1 through 3

SITRANS F 1010 instruments offer a unique methodology by which a particular flow response of an instrument may be linearized or optimized by tabulating the results of a series of calibration exercises or collected batch data points. Basically, the flow meter allows the user to select any of a wide variety of system variables (flow rate, pressure, viscosity, etc.) as a pointer into a table of calibration factors (up to 32). As the system variable is updated, the value of the table's output factors (or positive and negative flow) is re-evaluated and used as a modifier for the current rate register. Note that the flow register is still zeroed and Reynolds number compensated normally and these slope corrections are in addition to these fundamentals.

Note

Kc is still active when this method is being used.

To install a Calibration table:

- 1. The user selects a system variable that appears to correlate strongly with calibration shifts observed.
- A table of values is formed comprised of the values that this index could assume over the range of system operation. Remember, the tables created do not extrapolate beyond their end points, they "clip."
- A calibration factor, a number usually close to 1.00, is entered as a positive and a negative flow rate correction factor (termed PosFlow Corr and NegFlow Corr) for each of the desired index points.

A.5 Setup Procedure for Wet-Flow Calibration

The table may contain up to 32 pairs of these slope correction factors. Note that the Kc factor, unlike these slope correction factors, is entered as a signed percent change in rate, while these factors are simply rate multipliers. As points are entered, the point editor will provide list access to the already entered points plus access to the [New Point] menu cell, used to add a new point. The table may be created in its entirety and then activated by selecting [Yes] in the [Table Active] menu cell. The entire table may be cleared by selecting [Yes] in the [Clear Table] menu cell.

Note

Careless use of the calibration tables can have a detrimental impact on the measurement performance of the flow meter.

Note

Take precautions before enabling these calibration tables. Although it is unlikely that all three tables would ever be employed in a real installation, three tables are offered for maximum user flexibility. Since the tables can be disabled without being destroyed, 2 or 3 optimization strategies may be tested by this means in order to determine which approach is most effective.

A.5 Setup Procedure for Wet-Flow Calibration

Calibrated SITRANS F 1010 Portable and NEMA Flow Meter Systems

NOTICE

Data Corruption

DO NOT use the field manual installation procedure to start up a wet-flow calibrated system. Doing so could void the calibration by corrupting essential data.

These are the only authorized instructions to be used when commissioning a wet-flow calibrated 1010 system.

When a SITRANS F 1010 system is wet-flow calibrated, the flow display computer stores the installation parameters in its storage memory. Each flow calibration is assigned a unique site name. Usually, the site name corresponds to the pipe size. For example, a 3-inch carbon steel, schedule 40 pipe would be given the name "3CS40."

The flow calibration report issued with each wet-flow calibration, includes a flow calibration "Diagnostic Data Sheet." This data sheet lists the site name and other necessary information (such as sensor serial number and spacing information), for setting-up the flow meter. A wet-flow calibration applies to a specific flow meter and set of sensors; identified by serial numbers on the diagnostic data sheet.

Note

In order for the flow calibration to be valid, the flow computer and sensors being used must have the same serial numbers as those listed for the site on the Calibration Diagnostic Data Sheet.

Sensor Installation

- Refer to the diagnostic data sheet to find the mounting mode (Direct or Reflect) used during the wet-flow calibration. Review the sensor installation guidelines in your Operating Instructions manual.
- 2. Refer to the diagnostic data sheet for the sensor spacing index utilized during the flow calibration. Using the mounting configuration employed during the flow calibration, install the sensors on the pipe at the above noted spacing positions in accordance with the instructions provided on the sensor installation drawings.
- 3. Attach the sensor cables noting that the cable marked UP (upstream) attaches to the sensor closest to the source of flow.

Note

Before proceeding further, ensure that the pipe is full of liquid. It is not important at this point that it be flowing.

Flow meter Setup

Note

The following instructions require the use of the keypad and the menu. The installer should become familiar with their use before proceeding further.

- 1. Switch the flow meter on. Press the <MENU> key.
- 2. On multi-channel flow meters, use the arrow keys to select [2 Channel Flow] or [Dual Path Flow] depending on the mode utilized for the wet-flow calibration.
- 3. Use the arrow keys to select either [Clamp-on] or [Clamp-on Spool].
- 4. Select [Full Site Setup] and use the <Right Arrow> to select [Channel Setup]; then select [Recall Site Setup].
- 5. Use the <Down Arrow> to scroll to the site name indicated on the Calibration Diagnostic Data Sheet and then press <ENTER>.

A.5 Setup Procedure for Wet-Flow Calibration

- 6. The meter will perform a momentary "Makeup" routine that will take a few seconds and then begin operation.
- 7. Refer to your Operations Instruction manual for instructions on setting zero flow.

Note

Setting zero flow must be performed each time the sensors are installed. The zero adjustment has no effect on the wet-flow calibration data or the calibration (Kc) factor.

- 8. Using the arrow keys, scroll to the [Span/Set/Cal] menu location. Verify that the [Kc] (calibration) factor matches the value indicated on the diagnostic data sheet.
- If you are measuring a liquid other than ambient water, select the [Liquid Class] menu cell and <Down Arrow> from there to [Viscosity]. Enter the correct viscosity for the liquid you will be monitoring.
- 10.Setup is now complete. Press the <MENU> key twice to view the flow rate display. DO NOT utilize the [Save Site] command when it appears.
- 11. When measurements are completed, simply turn off the meter. DO NOT save the site. This might contaminate the wet-flow calibration data already stored.

Note

Contact Siemens Technical Services Department (<u>http://www.siemens.com/automation/service&support</u>) if any flow calibration data is accidentally removed or overwritten.

Transfer Install Function

All SITRANS F 1010 flow meter operating systems (version 3.00.20 and greater) include the installation facility called "Transfer Install." This function permits the sensors to be repositioned while maintaining all calibration parameters and operation established during the water calibration. The Transfer Install function allows the sensors to be optimally positioned for a different fluid, without the need for a new Initial Makeup procedure.

Note

Prior to performing Transfer Install make sure that the water calibration procedure was performed and a saved active site exists.

Transfer Install Procedure

To initiate the Transfer Install function, proceed as follows:

- 1. In the [Application Data] menu press the <Right Arrow> to select the [Liquid Class] menu cell. Scroll and highlight [Estimated Vs M/S] from the option list.
- 2. Use the numeric keys to change the Estimated Vs to the Estimated Vs value of the customer selected liquid.
- 3. To enter new Estimated Vs value press <ENTER>.

- 4. Proceed to the [Install Sensor] menu and select the same sensor, mounting mode and spacing offset that was selected for the water calibration.
- 5. Re-space the sensors to the index position indicated by the flow meter.
- 6. Scroll to the [Install Complete] menu cell and select [Transfer Install] from the option list.

Note

If [Transfer Install] does not appear in the option list then either the Estimated Vs or the sensor size was improperly entered. In this case, recall the water calibration site and start the procedure again at Step 1 above.

- 7. For Multi-Path systems repeat Step 6 above for the remaining paths.
- 8. The flow meter should now be operational at the new spacing location.

Note

Depending on the size of the pipeline, the change in the estimated sonic velocity (Vs) and the repositioning of sensors, the flow meter may not operate out of Fault even if the spool or pipe is filled with liquid. This can be expected when performing a Transfer Install for liquefied gases or for clamp-on natural gas flow meters.

Saving New Transfer Install Site

- 1. To save the Transfer Installed site, scroll to the [Channel Setup] menu and press the <Right Arrow>. Press the <Right Arrow> again to select the [Save/Rename] menu cell.
- 2. Use the numeric keys to rename the Transfer Installed site with the same site name used above, but with a "T" appended to the end of the site name (e.g., 3CS40T).
- 3. Press <ENTER> to store data.

Appendix

A.5 Setup Procedure for Wet-Flow Calibration

Appendix

B.1 Installation/Outline Drawings

The following are the installation and outline drawings for the SITRANS FUS1010 NEMA 4X flow meter.

1010NS2-7 Rev D - Installation Drawing, 1010 Series Flow Computer, Agency Approved

1010N-7-7 Rev 08 - Installation Wiring, Expanded I/O Module

1010N-2-7 Rev 05 - Installation Wiring, I/O Module

1010N-5S2-7 Rev D - Installation Drawing, Analog Input Module

1010N-5DS2-7 Rev 06 - Installation Drawing, Analog Input Module

1010N-8MS2-7 Rev 03 - Installation Wiring, I/O Module

1010-304 Rev 14 - Connection Diagram for Hazardous Area Use, Agency Approved, 1010NS2/1010MNS2 Series Flow Computer

1010WX-S2-7 Rev A - Installation Drawing, 1010 Series Single/Dual Channel Flow Computer, Agency Approved

1010MNS2-7 Rev C - Installation Drawing, 1010 Series Multi-Channel Flow Computer, Agency Approved

1010MWX-S2-7 Rev A - Installation Drawing, 1010 Series Multi-Channel Flow Computer, Agency Approved

1010-443 Rev 05 - Connection Diagram for Hazardous Area Use, Agency Approved, 1010WX-S2 Series Flow Computer

1010NS9-7 Rev A - Installation Drawing, 1010 Series Flow Computer, Agency Approved

1010MNS9-7 Rev A - Installation Drawing, 1010 Series Multi-Channel Flow Computer, Agency Approved

1010-389 Rev 05 - Connection Diagram, Agency Approved for Hazardous Area Use, 1010NS9/1010MNS9 Series Flow Computer

1010-391 Rev C - Connection Diagram, Agency Approved for Zone 2 Connections, 1010NS9 Flow Computer System

1011NS2-7 Rev D - Installation Guide, Connection Diagram Selection, Agency Approved, 1011N Series Transducers

1011NS9-7 Rev C1 - Installation Guide, Connection Diagram Selection, Agency Approved, 1011N Series Transducers

1011NFPS-7 Rev B - Installation Drawing, 1011NPFS Series dedicated Plastic Body Transducer

B.1 Installation/Outline Drawings

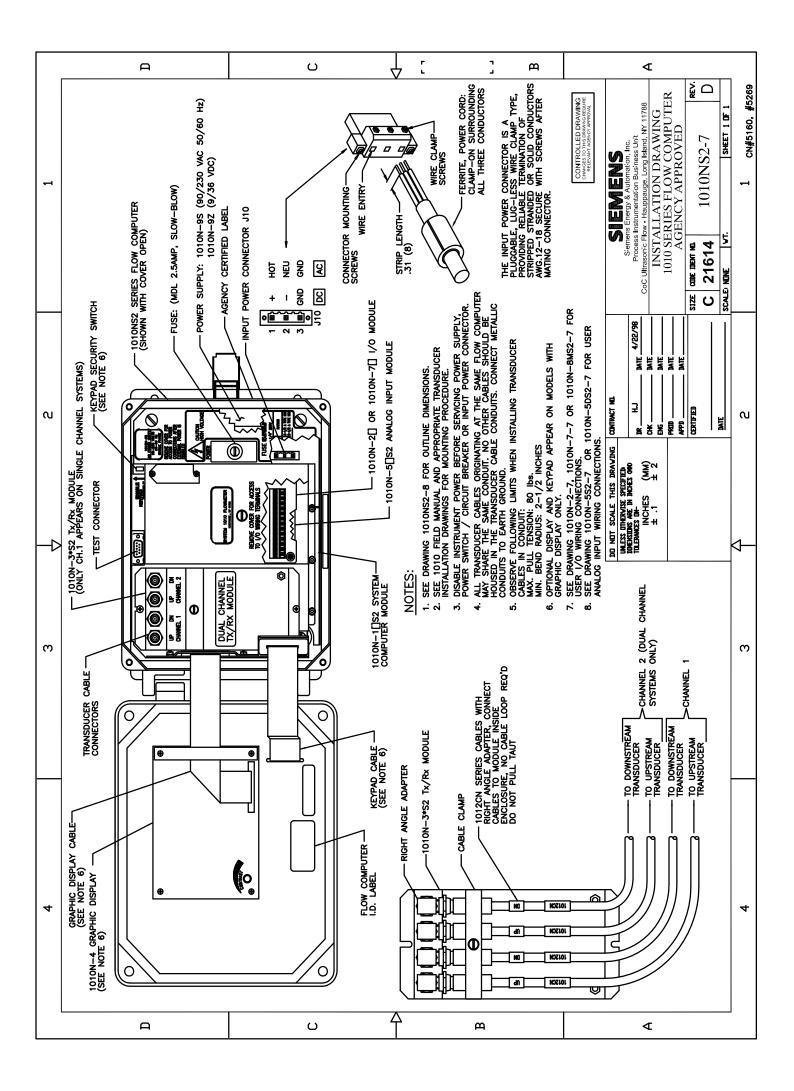
1011HNS2-7 Rev D - Installation Guide, Connection Diagram Selection, Agency Approved, 1011HN Series Transducers

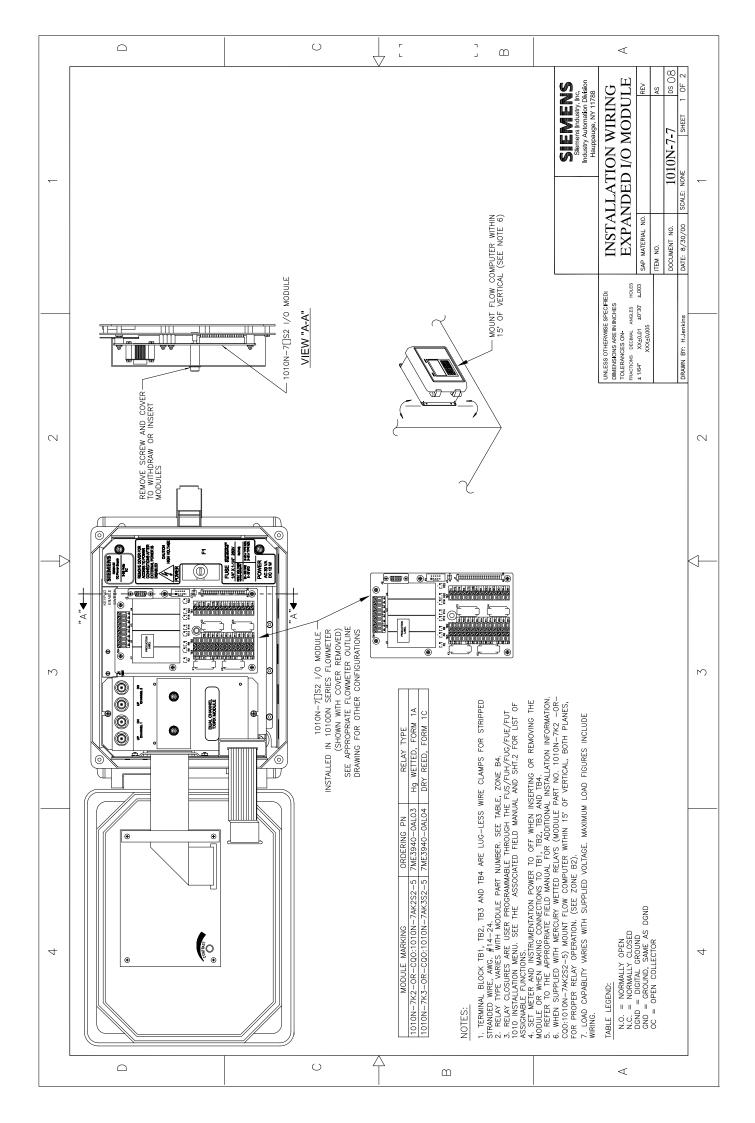
1011HNS9-7 Rev C1 - Installation Guide, Connection Diagram Selection, Agency Approved, 1011HN Series Transducers

1011HNFS-7 Rev 02 - Installation, 1011HNFS Series Dedicated Plastic Body Transducer

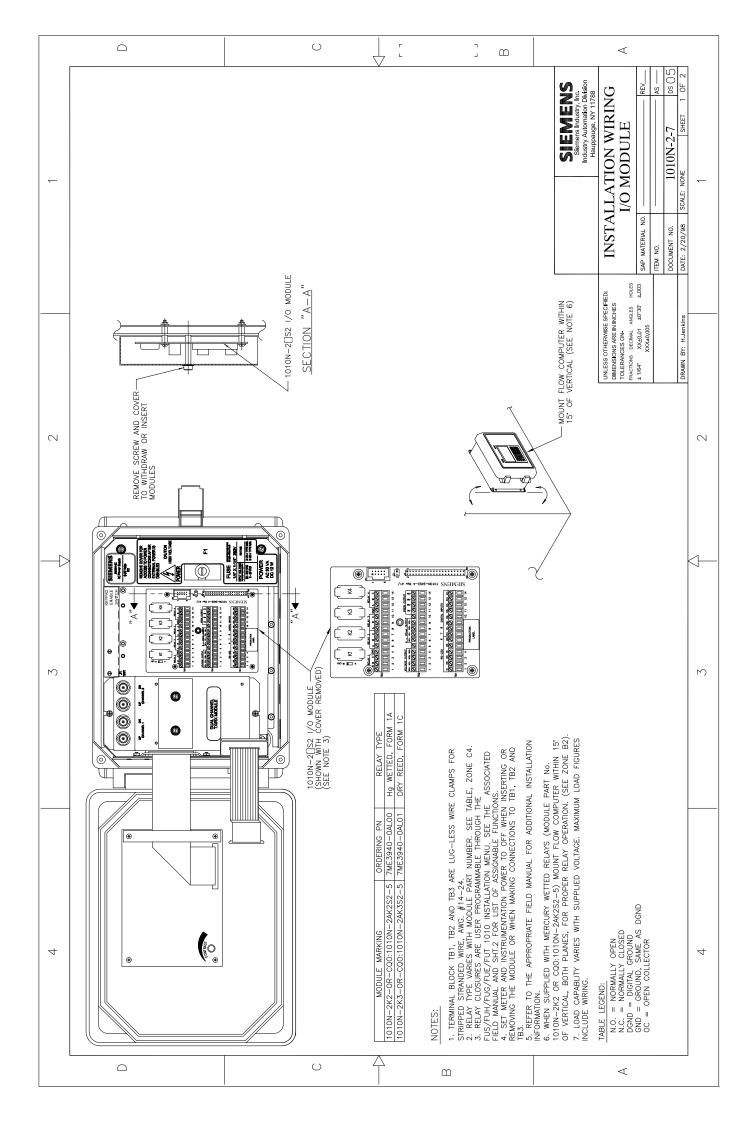
1012F-DB-7 Rev B - Installation Drawing, Dual Path Transducer Set w/Mounting Frames 1012MS-8 Rev F - Installation/Outline, Adjustable Mounting Strap

1012TN-7 Rev A - Installation Drawing, 1010 Series Transducers and Mounting Tracks

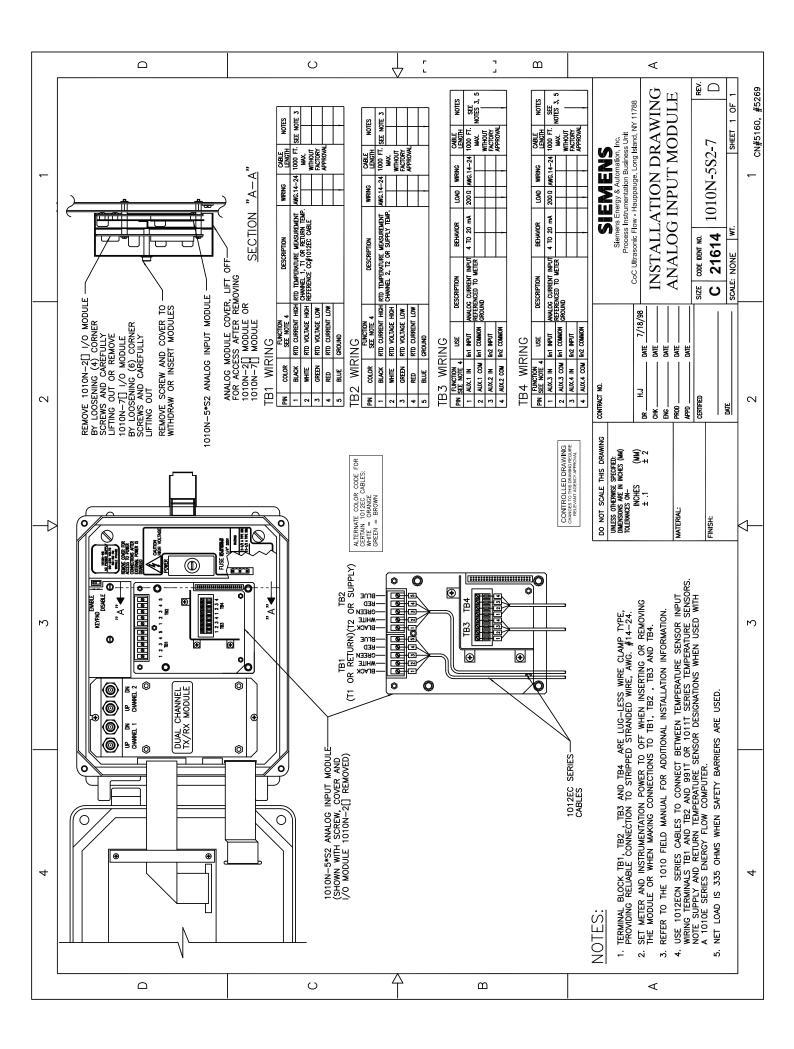

1012TNH-7 Rev A - Installation Drawing, 1010 Series Transducer and Mounting Tracks

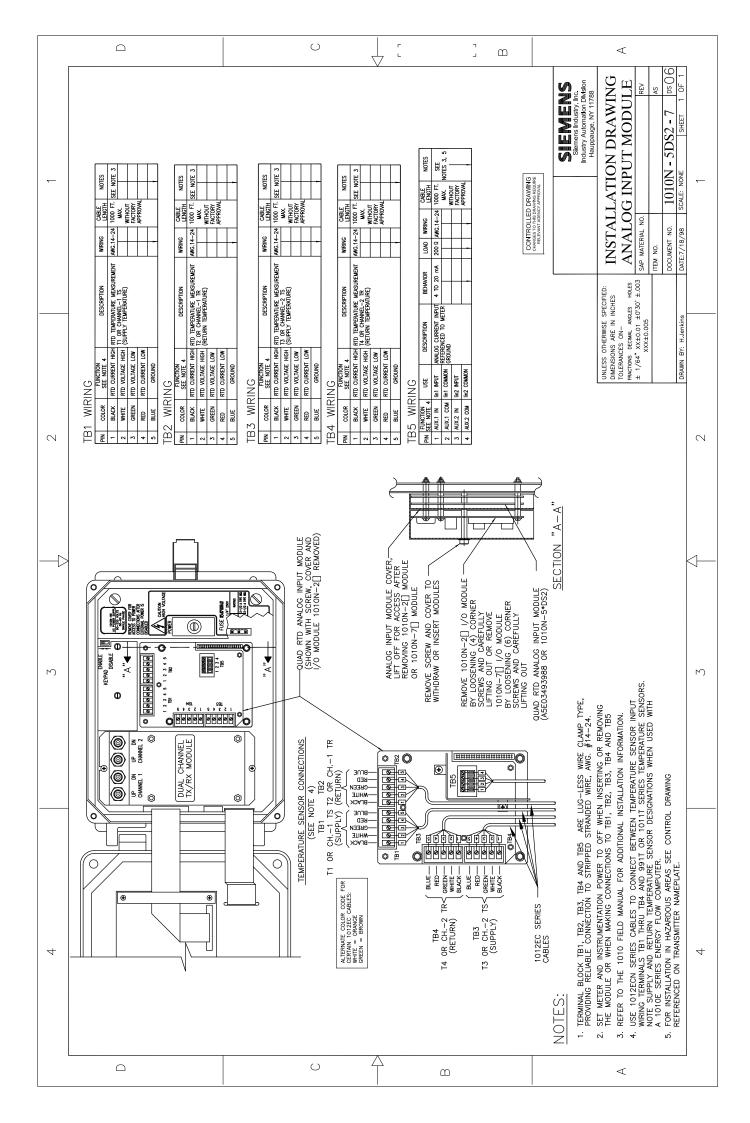

991TS2-7 Rev 03- Installation Drawing, Temp. Sensor, Dedicated NEMA 4, Pipe O.D. 1 1/4" - 48" (32-1220mm)

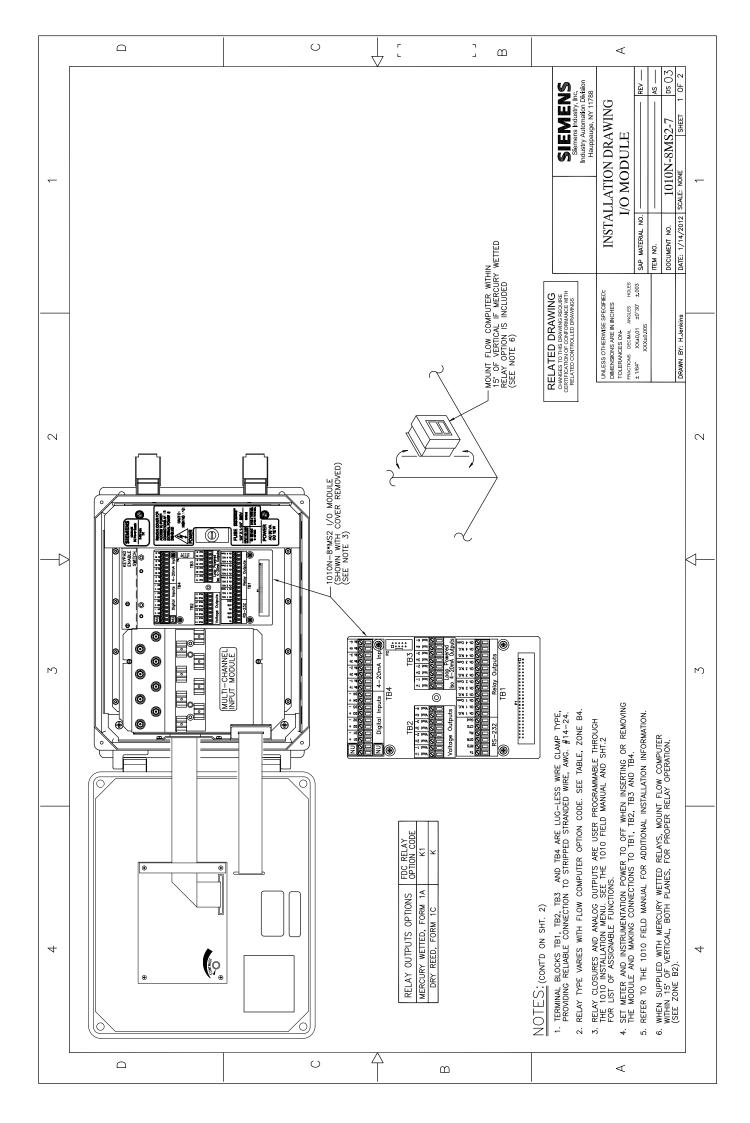
991TDS2-7 Rev 03 - Installation Drawing, 991TD Temperature Sensor, Submersible, Agency Approved

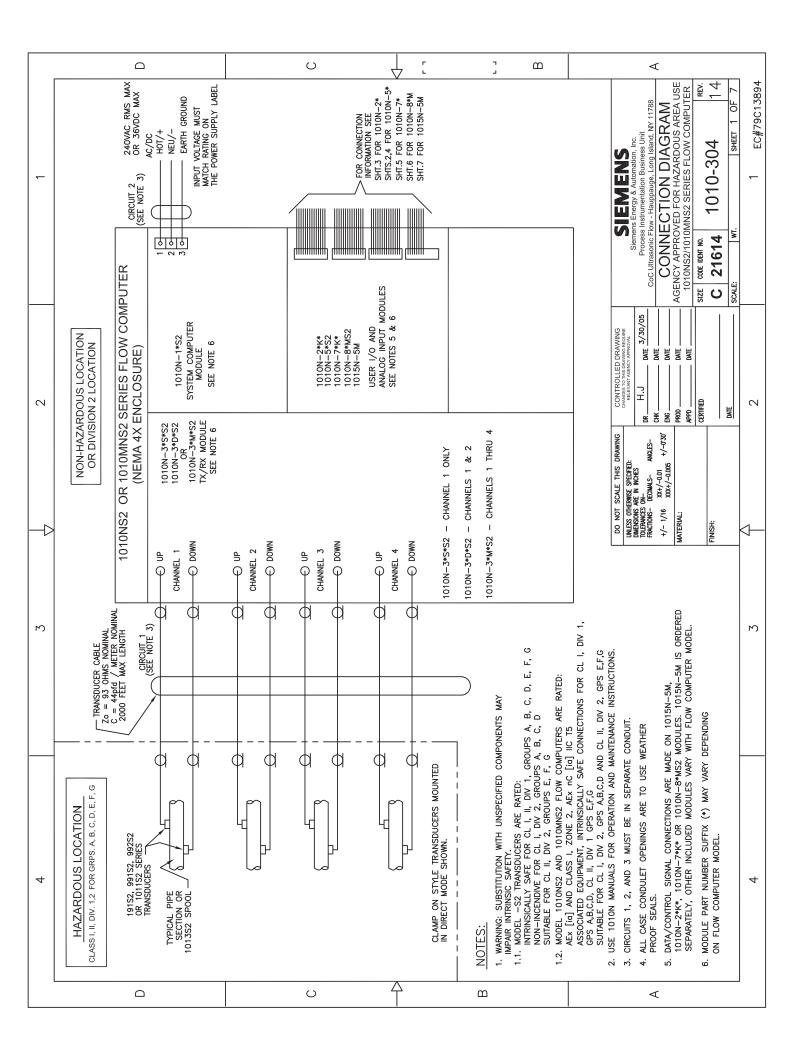

990TDMVH-7B Rev F - Installation Drawing, 990 Series Transducer, Direct Mode, Very High Temp.

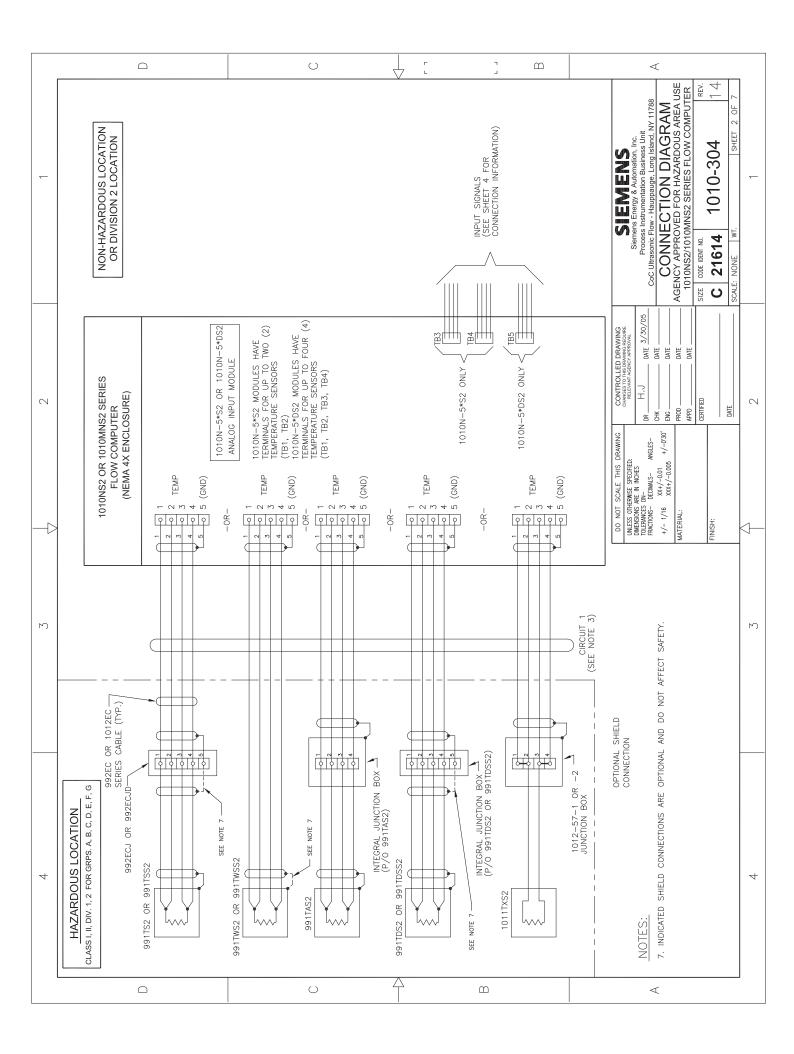
990TRMVH-7B Rev F - Installation Drawing, 990 Series Transducer, Reflect Mode, Very High Temp.

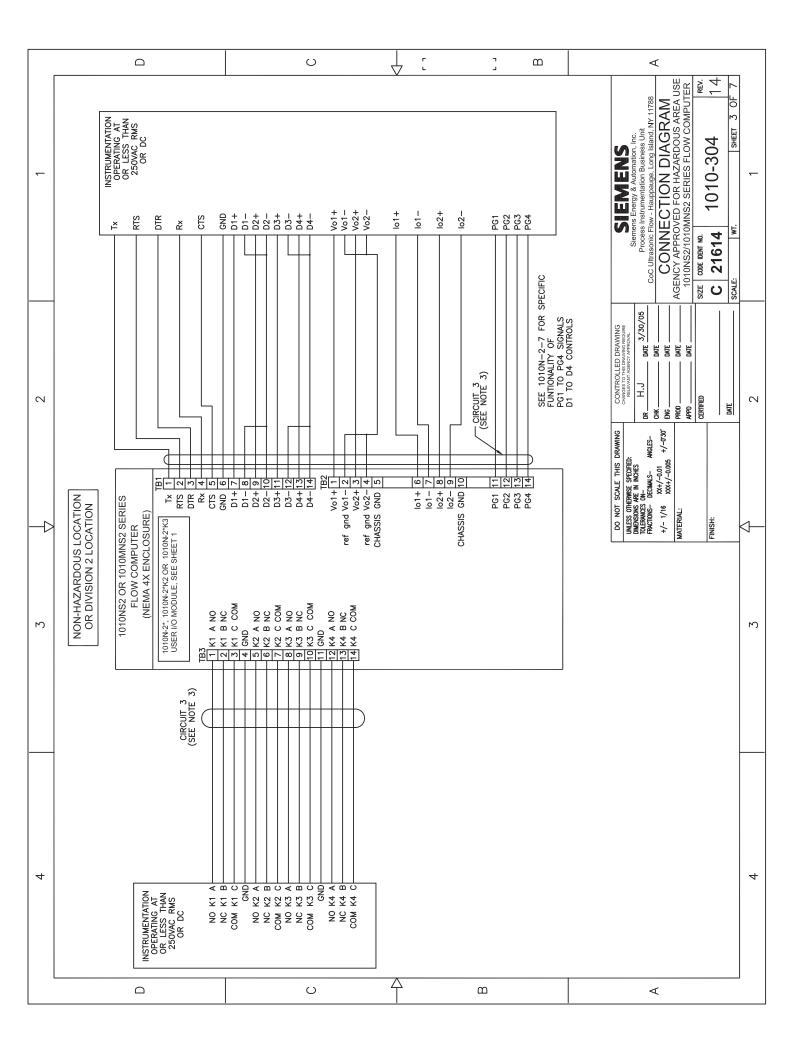


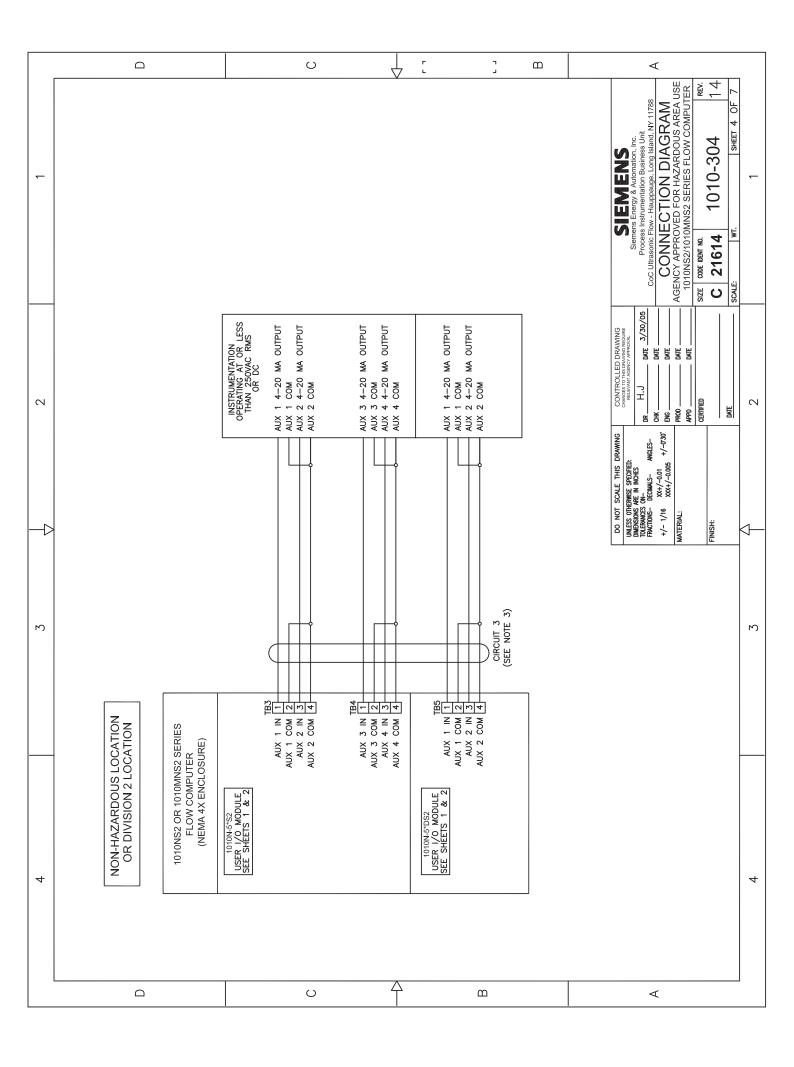


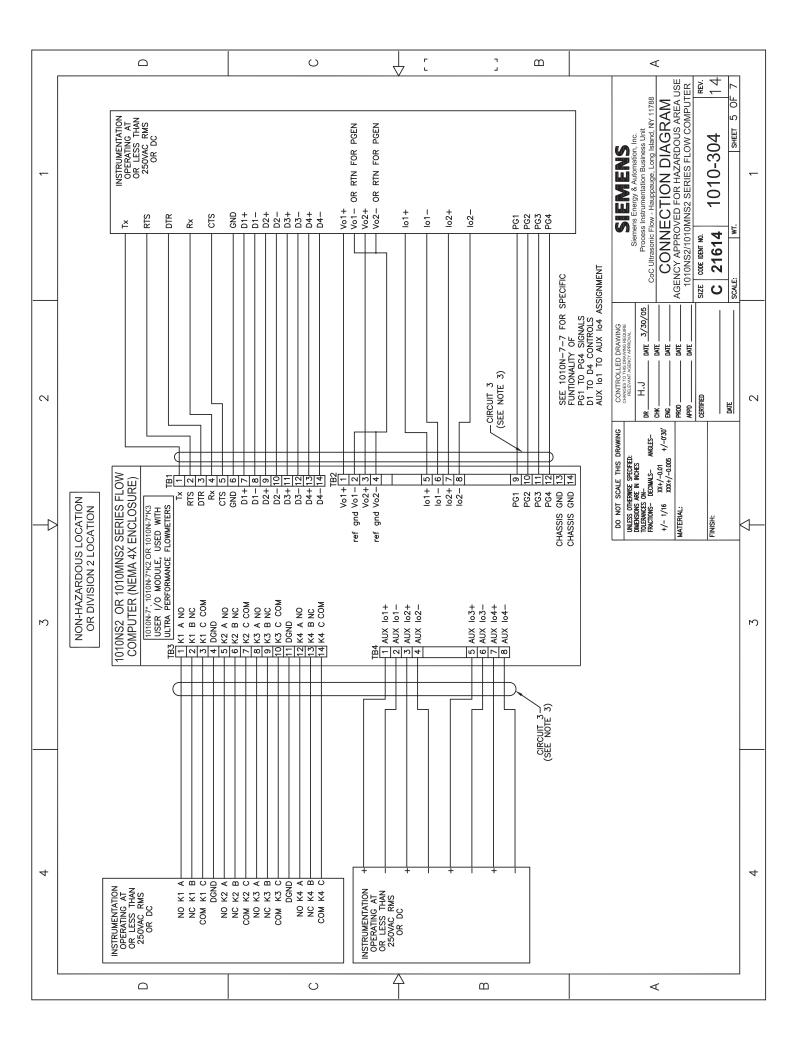

	Ω		<
-			Stermers industry, Inc. Isinents industry, Inc. Inc. Inc. Hauppauge, NY 11788 INSTALLATION WIRING EXPANDED I/O MODULE See material. No. REV As See material. No. As Document No. 1010N-7-7 Iss 08 Date: 8/30/00 Scale: NONE
	NOTES	CHI MOTI AND CLICR AND CLICR DUAL SALSO CONTROL DUAL SALSO CONTROL DUAL SALSO CONTROL STERV CLAWREL. STERV CLAWREL. NOTE: A CONTROL SALE NOTE: A CONTROL SALE NOTE: A CONTROL SALE NOTE: A CONTROL SALE NOTE: A CONTROL SALE A CONTROL	
	Collie Eliverit	I.2000F MX - 50 FET 1000 FET 1000 FET 000 FET 0.000 FET 000 FET 0.000 FET 000 FET 0.000 FET 000 FET 0.000 FET 1000 FET	UNLESS OTHERWISE SPECIFIED: UNLESS OTHERWISE SPECIFIED: TOLERWISE SON. FRACINGS EECIMAL ARGLES HO 4 164" XX40.01 ±0°30 ±0 1 164" XXX40.05 DRAWN BY: H.Jenkins
5	uterio	MINIMUM INSTRUED INSTRUED INSTRUED SEELED INSTRUED INSTRUED INSTRUED INSTRUED INSTRUED INSTRUED INSTRUED INSTRUED INSTRUED INSTRUED INSTRUE INSTRUED INSTRUE INSTRUED INSTRUE INSTRUED INSTRUE	0
	LOND LOND FFE RUMMIN-232E		
	TME360+0 [EUH1010] 5PWN04 5PWN04 5DWN04 5DWN04 50N070 50N070 50N070 50N070 50N070 50N070 50N070 50N070 50N070	Personal and perso	(
	ECTIONS "7ME560*6 [FULIOI0] SPNU03	Rest Rest Rest Statue Statue Statue Statue	
Ю	RING CONNE SYSTEMS: SYST		(1)
	MINAL BLOCK WIRING C "ME380% SITRANS FUE1010 OF SYSTEMS: FEN02>5EN04 SEN02>5EN04 SEN02>5EN04 STEMS FUE1010 OF SYSTEMS: ME380% SITRANS FUE1010 OF SYSTEMS ME380% SITRANS FUE1000 O	Port Port Port Port Port Port Port Port	
	TERMINAL "7ME350*a "7ME353*a STRANS 7ME353*a STRANS "7ME355*a STRANS "7ME350*a2 "7ME350*a2 "9=0,2	Poer Res22 Aground and a contract of the contr	
4	METER PN'S AND OPERATING SYSTEMS 1 TERMETALTRY COMPLEXING THE STATISTIC STATEMS 1 TERMETALTRY COMPLEXING THE STATEMS 1 TERMETALTRY	K F F Route CLUB TO STOR Serves 7 0.12 0.12 0.00 0.000 0.000 0.000 10 0.22 0.00 0.000 0.000 0.000 0.000 11 0 0.24 0.000 0.0000 0.0000 0.0000 12 0.01 0.01 0.01 0.0000 0.0000 0.0000 13 0.04 0.01 0.01 0.01 0.01 0.0000 13 0.04 0.01 0.01 0.01 0.0000 0.0000 10 0.01 0.01 0.01 0.01 0.01 0.0000 10 0.01 0.01 0.01 0.01 0.01 0.0000 11 0 0.01 0.01 0.01 0.01 0.0000 11 0 0.02 0.01 0.01 0.0000 0.0000 11 0 0.02 0.01 0.0000 0.0000 0.0	4
			<

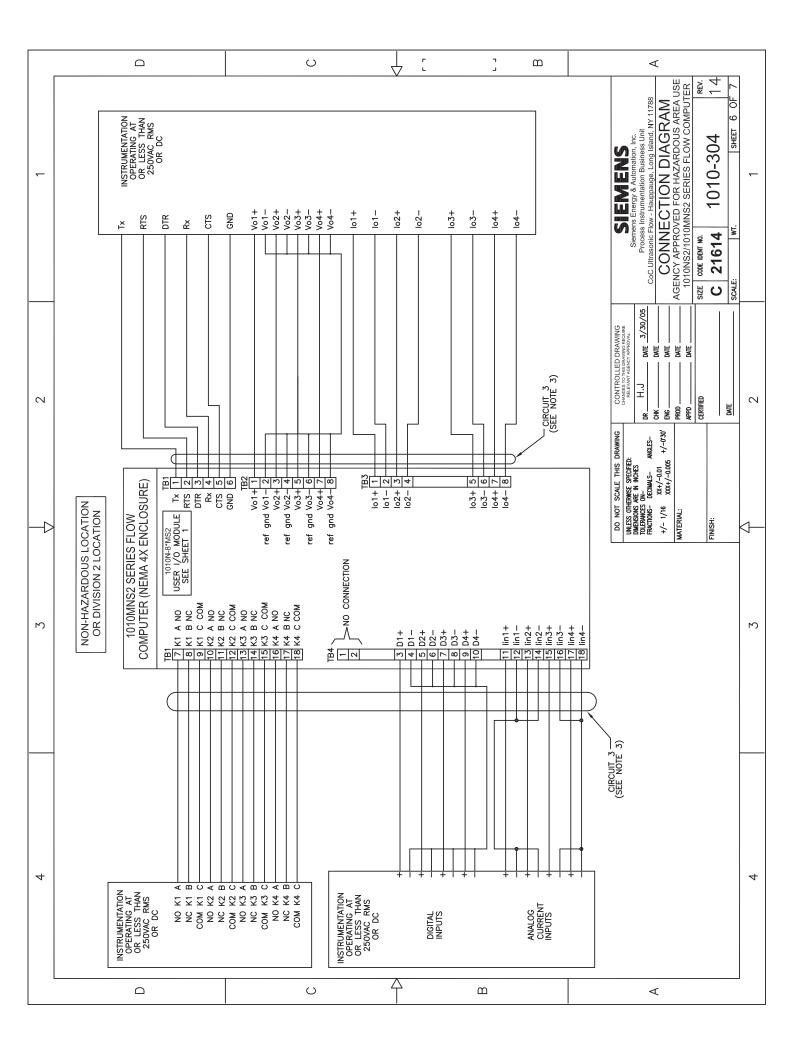

		0	U ()	_ [] m	<	
	Ţ				SIEMER AND A LATION WIRIN 1175 ALLATION WIRIN 1175 ALLATION WIRIN 1170 1/O MODULE 00 1010N-2-7 5CALE: NONE	-
					UNLESS OTHERWISE SPECIFIED: DIMENSIONS ARE IN INCHES FOLERANCES ON- FOLERANCES ON- FOLERANCES ON- AC4001 507 2003 2104" XX44010 507 2003 DRAWN BY: H.Jenkins	
				CABLE LENGT		
	2	WIRING SHIELDED DATA MINIMUM	SHELDED INSTRUMENT CABLE, 24 ANG MINIMUM WIRING WIRING SHIELDED STRUMENT CABLE	WIRING AS WIRING AS REDERED FOR APLICATION CIRCUT		2
Termination Termination Termination Termination Termination Model 74230% sinker function of systems short>500% 74230% sinker function of systems short>500% Model 74230% sinker function of systems short>500% 74230% sinker function of systems short>500% Model 74230% sinker function of systems short>500% 74230% sinker function of systems short>500% Model 56000 2014 cutotion 2014 cutotion 2004 cutotion Model 56000 2014 cutotion 2004 cutotion 2004 cutotion Model 20000 2014 cutotion 2004 cutotion 2004 cutotion Model 20000 2014 cutotion 2004 cutotion 2004 cutotion Model 2014 cutotion 2014 cutotion 2014 cutotion 2004 cutotion Model 2010 cutotion 2010 cutotion 2014 cutotion 2014 cutotion Model 2010 cutotion 2010 cutotion 2010 cutotion 2014 cutotion Model 2010 cutotion 2010 cutotion 2014 cutotion 2014 cutotion Model 2010 cutotion <td< td=""><th></th><td>LOAD I-PER EN/TA-232E STANDARD - FACTINE LOW: TTL</td><td>ACTIVE LOW: TTL ACTIVE LOW: TTL ACTIVE LOW: TTL ACTIVE LOW: TTL LOAD 10470, MINIMUM 10470, MINIMUM 10470, MINIMUM 10470, MINIMUM 10470, MINIMUM 10470, MINIMUM RETURN FOR 4-20mA 0471 4-20mA RETURN FOR 4-20mA 0472 4-20mA RETURN FOR 4-20mA MINIMUM RETURN FOR 4-20mA MINIMUM</td><td></td><td></td><td></td></td<>		LOAD I-PER EN/TA-232E STANDARD - FACTINE LOW: TTL	ACTIVE LOW: TTL ACTIVE LOW: TTL ACTIVE LOW: TTL ACTIVE LOW: TTL LOAD 10470, MINIMUM 10470, MINIMUM 10470, MINIMUM 10470, MINIMUM 10470, MINIMUM 10470, MINIMUM RETURN FOR 4-20mA 0471 4-20mA RETURN FOR 4-20mA 0472 4-20mA RETURN FOR 4-20mA MINIMUM RETURN FOR 4-20mA MINIMUM			
TERMINAL BLOCK WIRING TERMINAL BLOCK WIRING TERMINAL BLOCK WIRING Machine stress transmission of stress in the stress transmission of stress in the str		 YARES60% [FUH1010] SPANDI & SPANDI & SPA		NEG [_] TOTAL TTL-d Poos [+] TOTAL OC-d Poos [+] TOTAL OC-d Puot. PATH ONLY FUNCTION FUNCTION RISIONLS SET PY RISIONLS SET PY RIMALS SET PY	P 	<u>}</u>
Image: state	ю	LOCK WIRING CONNECTION: 10 0P SYSTEMS: SEN01>55004 01 0P SYSTEMS: SEN01>55002 01 0P SYSTEMS: SEN01>5002 01 0P SYSTEMS: SEN01>5002 01 0P SYSTEMS: SEN01>5002 01 0P SYSTEMS: SEN01>5002	HI TOTAL ENDER HI TOTAL RESERVICE CHI TOTAL RESERVICE CHI TOTAL RESERVICE CHI TOTAL RESERVICE CHI TOTAL RESERVICE CHI TOTAL RESERVICE CHI TOTAL CHI TOTAL MATTERS RESERVICE RELIED RESERVICE RELI	GND GND GND SV TTL SIGNAL-Ce SV TTL SIGNAL-Ce GND GND GND GND GND GND GND DJUAL CHANNEL DJUAL CHANNEL DJUAL CHANNEL DJUAL CHANNEL DJUAL CHANNEL DJUAL CHANNEL DJUAL CHANNEL DJUAL CHANNEL DJUAL CHANNEL RUN CHANNEL CONTROL SIGNAL SIGNAL RUN CHANNEL CONTROL CONTROL RUN CHANNEL SIGNAL SIGNAL SIGNAL SIGNAL RUN CHANNEL SI	eg 	S
		7ME350*0 7ME350*0 7ME360*02 3 3NMGLE FUN FUN FUN FUN FUN FUN FUN FUN	A CAU DEE OR UNDED OR OND A CAUTONAL F A CAUTONAL A CAUTONAL A CAUTONAL A CAUTONAL A CAUTONAL A CAUTONAL A CAUTONAL A CAUTONAL CAUTONA			
					-	
4 METER PUSS ADD 00 METER PUSS ADD 00 METER PUSS ADD 00 A 4 METER PUSS ADD 00 METER PUSS ADD 00 METER PUSS ADD 00 A 4 METER PUSS ADD 00 METER PUSS ADD 00 D01+1 D02+1 P 4 METER PUSS ADD 00 D01+1 D02+1 P P P 4 METER PUSS ADD 00 D02+1 D02+1 P P P 4 P P D02+1 D02+1 P P P 11 P P P P P P P P 11 P P P P P P P P P 11 P <th>4</th> <td></td> <td>CONTROLINE CONTROLINE CONTROLINE MARTER INSTALLA MARTER INSTALLA MART</td> <td>12 Pc2 SEE FUNCTION 13 Pc3 FEE UNCTION 14 Pc3 FEE UNCTION 14 Pc4 SEE FUNCTION 14 Pc4 SEE FUNCTION 15 Pc4 SEE FUNCTION 14 Pc4 SIGNUMY? 1 FILA FLA 1 FILA FLA 1 FILA FLA 1 FLA FLA 2 K1 FELA 3 K1 FELA FLA 4 GND DIGINLA FLONRON 5 K2 RELA 2 NOL 6 K3 RELA 2 NOL 9 K3 RELA 2 NOL 11 GND DIGINLA RELANA 13 K4 RELANA 3 NOL</td> <td>2 X X X X X X X X X X X X X X X X X X X</td> <td>4</td>	4		CONTROLINE CONTROLINE CONTROLINE MARTER INSTALLA MARTER INSTALLA MART	12 Pc2 SEE FUNCTION 13 Pc3 FEE UNCTION 14 Pc3 FEE UNCTION 14 Pc4 SEE FUNCTION 14 Pc4 SEE FUNCTION 15 Pc4 SEE FUNCTION 14 Pc4 SIGNUMY? 1 FILA FLA 1 FILA FLA 1 FILA FLA 1 FLA FLA 2 K1 FELA 3 K1 FELA FLA 4 GND DIGINLA FLONRON 5 K2 RELA 2 NOL 6 K3 RELA 2 NOL 9 K3 RELA 2 NOL 11 GND DIGINLA RELANA 13 K4 RELANA 3 NOL	2 X X X X X X X X X X X X X X X X X X X	4
		₩2335 <mark></mark>		<u> </u>		

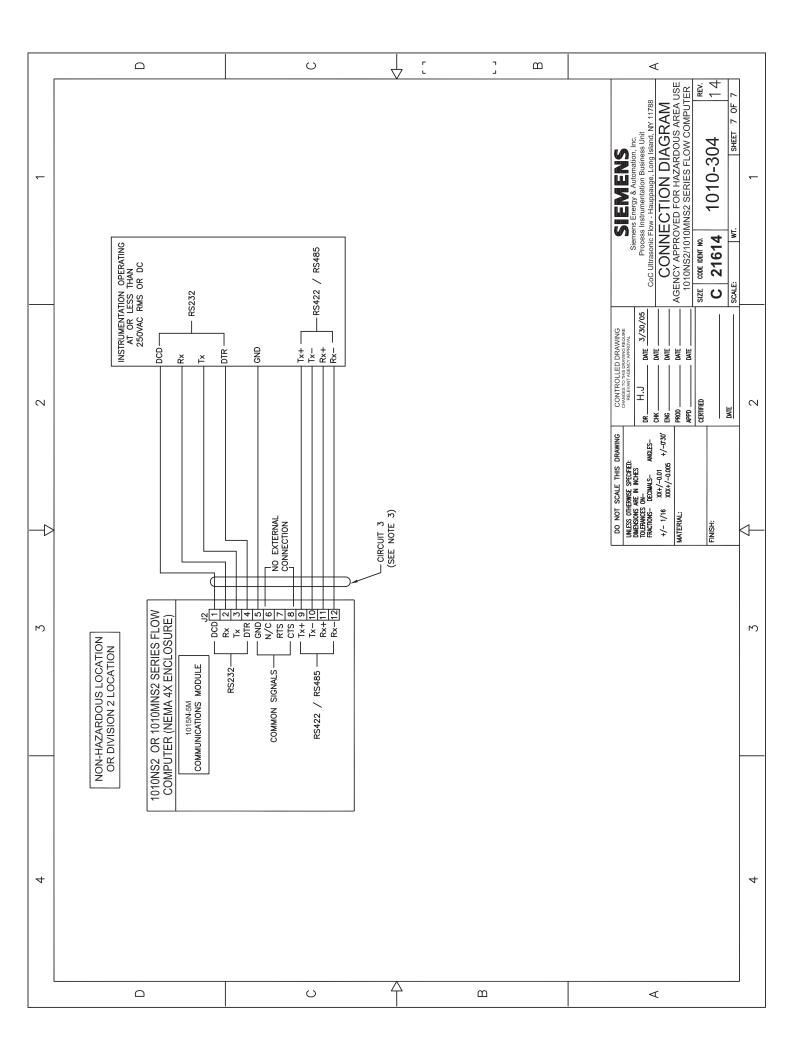


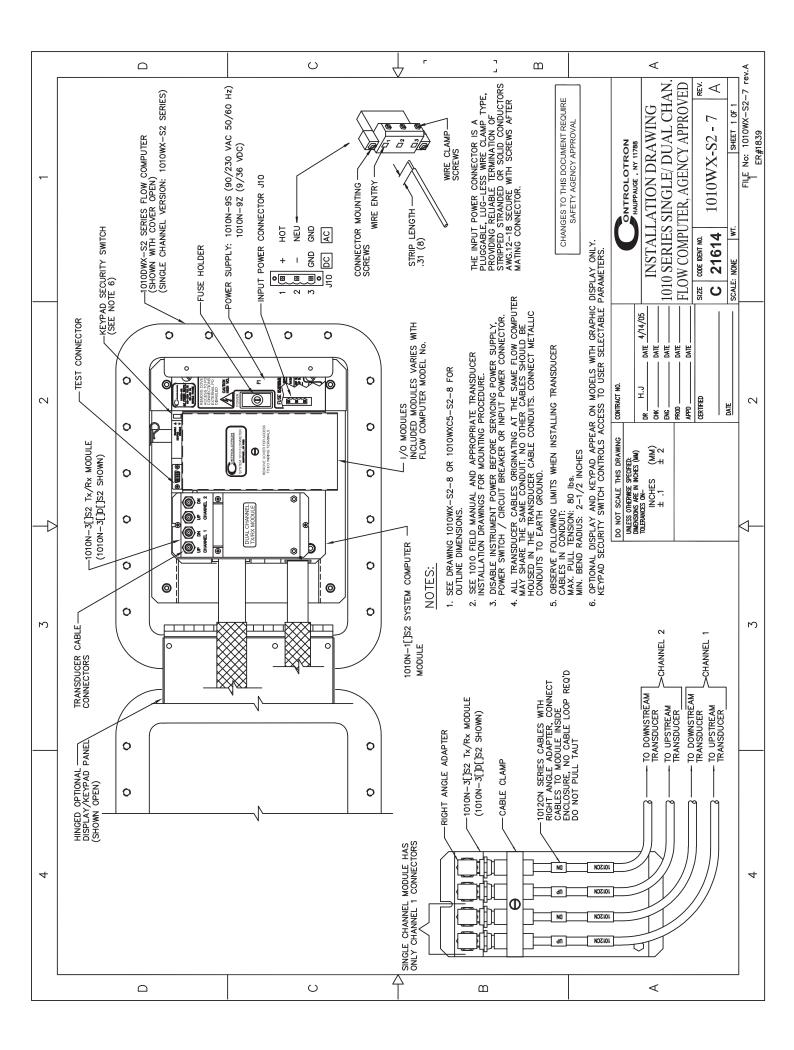


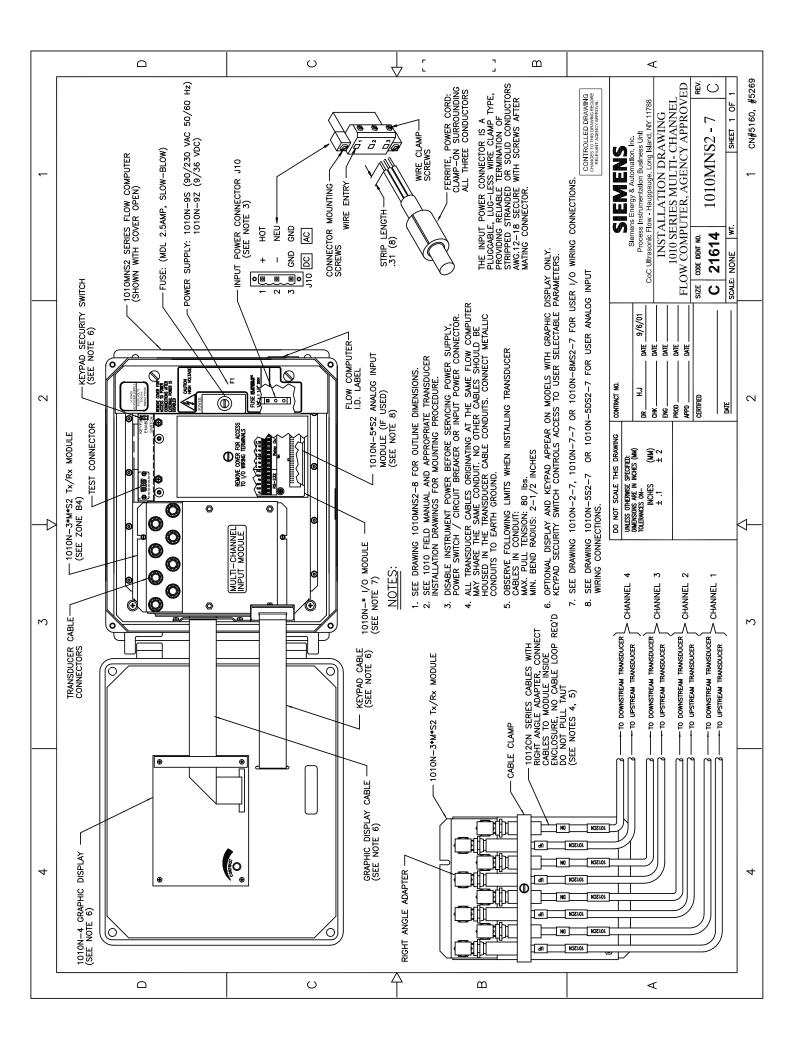


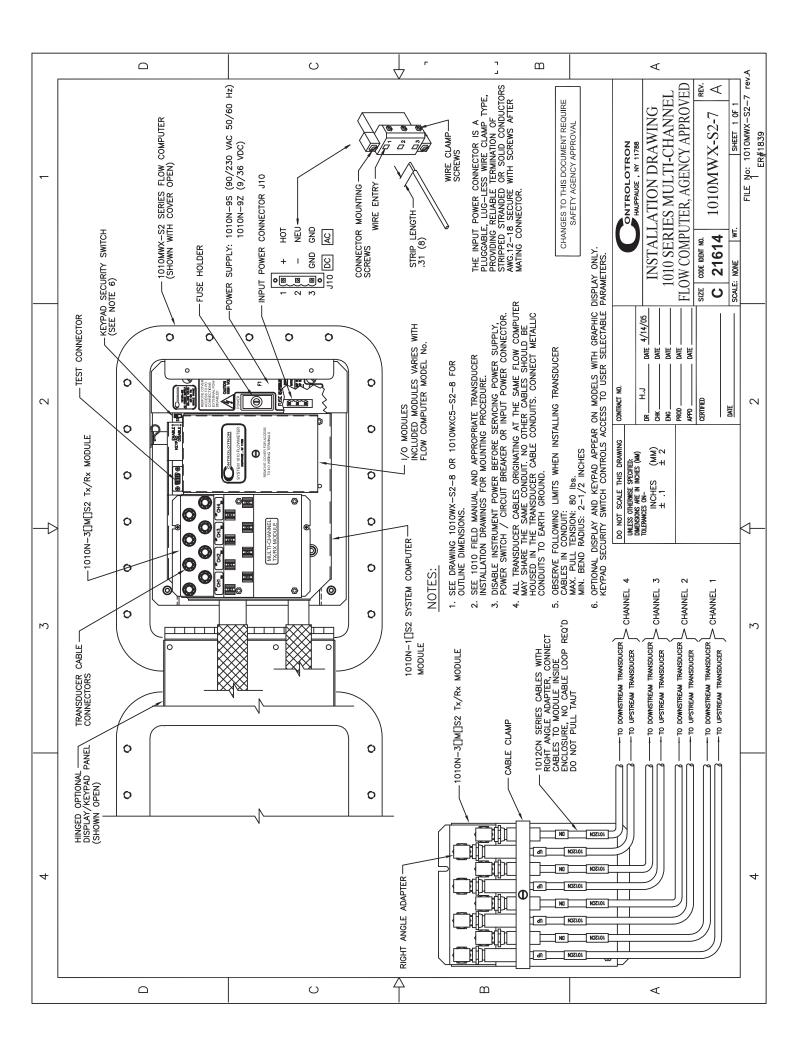

	Ω		0	Ļ :]		R
-	FLOWMETER 13 13 14 13 13 13 13 13 15 15 16 16 16 16 16 18 18 18 19 19 19 10 10 10 10 10 10 10 10 10 10	RESERVACE TO 3350 TOTAL SCHEMATIC "B" 4-20ma ANALOG INPUT				SIEMENS Semen budgy. Inc. Industry. Automation Division Hauppauge. NY 1778	INSTALLATION DRAWING I/O MODULE SAP MATERAL NO. TIEM NO. DOCUMENT NO. DATE: 1/14/2012 SCALE: NONE 1
2	TB3/1 lo + TB3/2 lo + TB3/	RILE DAVATER RESUCES RL MAX. TO 3200 BOR NET RESUCES RL MAX. TO 3200 RL = LOOP WIRE RESISTANCE PLUS USER'S INPUT LOAD RESISTANCE SCHEMATIC "A" ISOLATED 4-20mA OUTPUT				RELATED DRAWING CAWGESTO THIS PRAWING REQURE CENTREPORTING FCONFORMAGE RELATED CONTROLLED DRAWINGS	UNLESS OTHERWISE SPECIFIED: UNLESS OTHERWISE SPECIFIED: TOLERANCES ON FRACTIONS BECIMAL ANGLES HOLES 1 FRACTIONS BECIMAL ANGLES HOLES 2 FIGHT XX450.005 2 YXX450.005 2 PRAWN BY: H.Jenkins 2 PRAWN BY: H.Jenkins
3	LOAD WIRNIG CABLE CABL NOTES Der SHELDD DAN 50 F. M.X. AS SHELDD DAN 50 F. M.X. AS NOTE SATE NOTES NOTES SHELDD DAN 50 F. M.X. AS NOME SHELDD DAN 50 F. M.X. AS SHELDD AS NOTE SATE NOTES NOTES June SHELDD AS NOTES NOME SHELDD AS NOTES NOTES June PARE NOME SHELDD AS NOTES NOTES June PARE NOME SHELDA NOME Job MAR NOME NOME NOME Job MAR NOME NOME NOME NOME JOB MAR NOME	Kon-radiocine kon-radiocine LoAD WRING EABLE 10K0 MK1 24 GA MIN 1000 F1 MIROUT MIROUT MIROUT	LOAD WIRNIG CARLE	Particle Sector 24, 64, 64, 64, 64, 64, 64, 64, 64, 64, 6	LLOAD WIRNG CAREFT NOTES SHORT TO 24 GA MIN. 1000 FT. LOAD LOAD LATES RETURN OF 24 GA MIN. 1000 FT. LOAD LATES RETURN OF 24 GA MIN. 1000 FT. LOAD LATES LOAD RESITIVE. 24 GA MIN. 1000 FT. REF. SCHEMATIC "B" MAX. 1000 FT. REF. REF. SCHEMATIC "B" MAX. 1000 FT. REF. REF. REF. REF. REF. REF. REF. REF		NTES. SED PER 1010-304. 3
4	TB1 RS:232 / RELAY OUTPUTS PII # Sicout FUNCTION USE PII # Sicout FUNCTION USE PII TS RS:232 ROUEST TO SHO USE USE 1 TS RS:232 ROUEST TO SHO USE USE 2 TS RS:232 ROUEST TO SHO STANDAD RG:32 COMUNICATION PORT 3 TR RS:232 GLART TO SHO STANDAD RG:32 COMUNICATION PORT 5 TS RS:232 GLART TO SHO COMUNICATION PORT COMUNICATION PORT 6 6 RS:22 GLART TO SHO TRUM RC COMUNICATION PORT 7 CH 1 RELVT 1058MLY OREN RUMUNCATION RC COMUNICATION RC 1 CH 1 RELVT 1058MLY OLGSED TOUTO RC TOUTO RC CONTOCL 1 CH 1 RELVT 1058MLY OLGSED TOUTO RC TOUTO RC CONTOCL 1 CH 2 RELVT 1058MLY OLGSED TOUTO RC TOUTO RC TOUTO RC 1 CH 3 RELVT 2 RELVT 2 <td>17 0.44 B. RELY NOMLIV LOSE <thline< thr=""> Lose Lose</thline<></td> <td>DESCRIPTION</td> <td>2 Iout 1- ISOJATE LOOP EETURN IN SPANNAELS TO ALL 3 Iout 2+ ISOJATEL LOOP EETURN IN SPANNAELS PARNAELS ALL 4 Iout 2+ ISOJATEL LOOP EETURN IN PARAELE (LOOP POMP) SYSTEM WARAELS 5 Iout 2+ ISOJATEL LOOP EETURN IN PARAELE (LOOP POMP) ONTERN IN OLIVIES 5 Iout 2+ ISOJATEL LOOP EETURN IN PUT S 7 Iout 4+ ISOJATEL LOOP EETURN IN PUT S 7 IBU4 - ANALLOG/DIGTTAL INPUT S</td> <td>PIN FLINCTION DESCRIPTION USE 1 </td> <td>(CONT'D FRC</td> <td> RS-232 RANGE CAN BE INCREASED BY: USE OF SHORT HAUL MODEMS. USE OF SHORT HAUL MODEMS. USE OF TELEPHONE LINE MODEM. USE OF TELEPHONE LINE MODEM. 8. LOAD CAPABLITY VARIES WITH SUPPLIED VOLTAGE. MAXIMUM LOAD FIGURES INCLUDE WIRING. 9. RELAY VOLTAGE CURRENT LIMITED WHEN SAFETY BARRIERS USED PER 1010-304 </td>	17 0.44 B. RELY NOMLIV LOSE Lose <thline< thr=""> Lose Lose</thline<>	DESCRIPTION	2 Iout 1- ISOJATE LOOP EETURN IN SPANNAELS TO ALL 3 Iout 2+ ISOJATEL LOOP EETURN IN SPANNAELS PARNAELS ALL 4 Iout 2+ ISOJATEL LOOP EETURN IN PARAELE (LOOP POMP) SYSTEM WARAELS 5 Iout 2+ ISOJATEL LOOP EETURN IN PARAELE (LOOP POMP) ONTERN IN OLIVIES 5 Iout 2+ ISOJATEL LOOP EETURN IN PUT S 7 Iout 4+ ISOJATEL LOOP EETURN IN PUT S 7 IBU4 - ANALLOG/DIGTTAL INPUT S	PIN FLINCTION DESCRIPTION USE 1	(CONT'D FRC	 RS-232 RANGE CAN BE INCREASED BY: USE OF SHORT HAUL MODEMS. USE OF SHORT HAUL MODEMS. USE OF TELEPHONE LINE MODEM. USE OF TELEPHONE LINE MODEM. 8. LOAD CAPABLITY VARIES WITH SUPPLIED VOLTAGE. MAXIMUM LOAD FIGURES INCLUDE WIRING. 9. RELAY VOLTAGE CURRENT LIMITED WHEN SAFETY BARRIERS USED PER 1010-304
	Ω		0	\uparrow	m		<

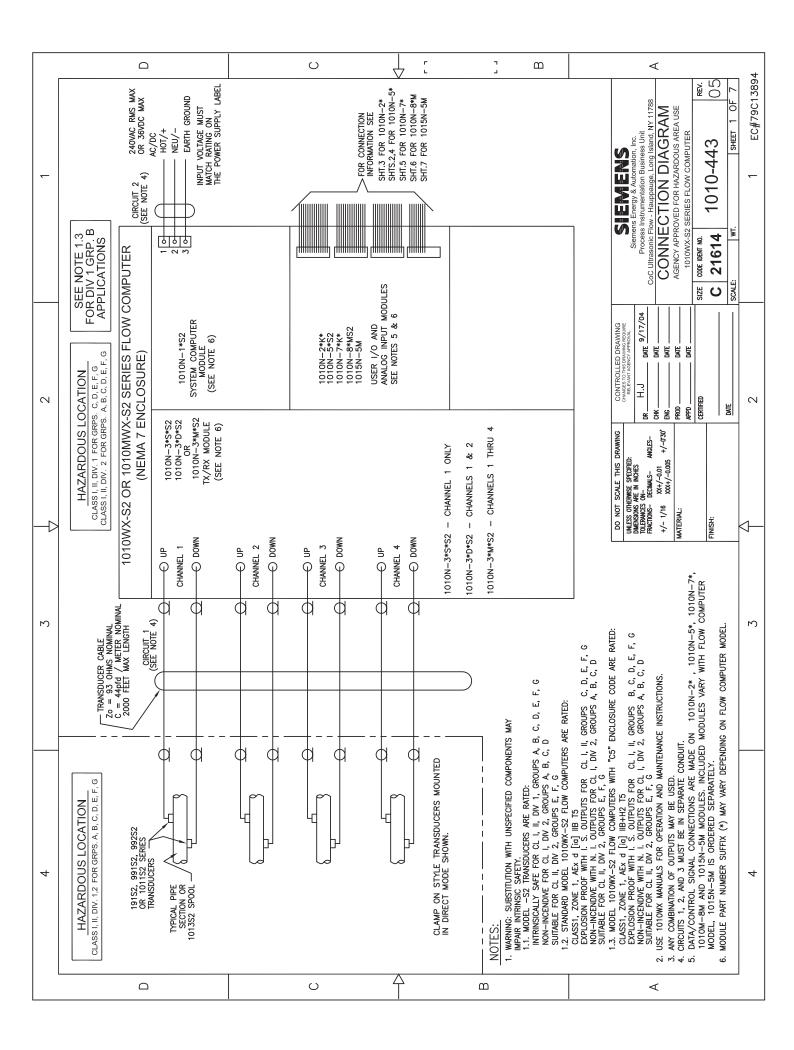


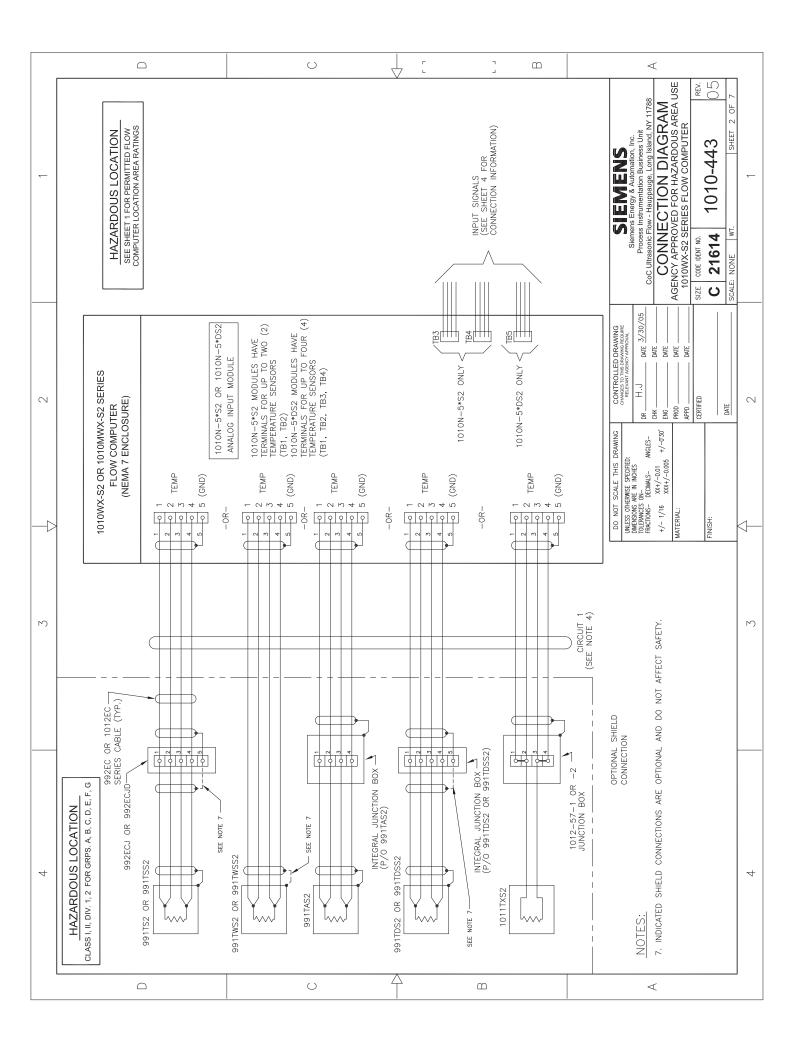


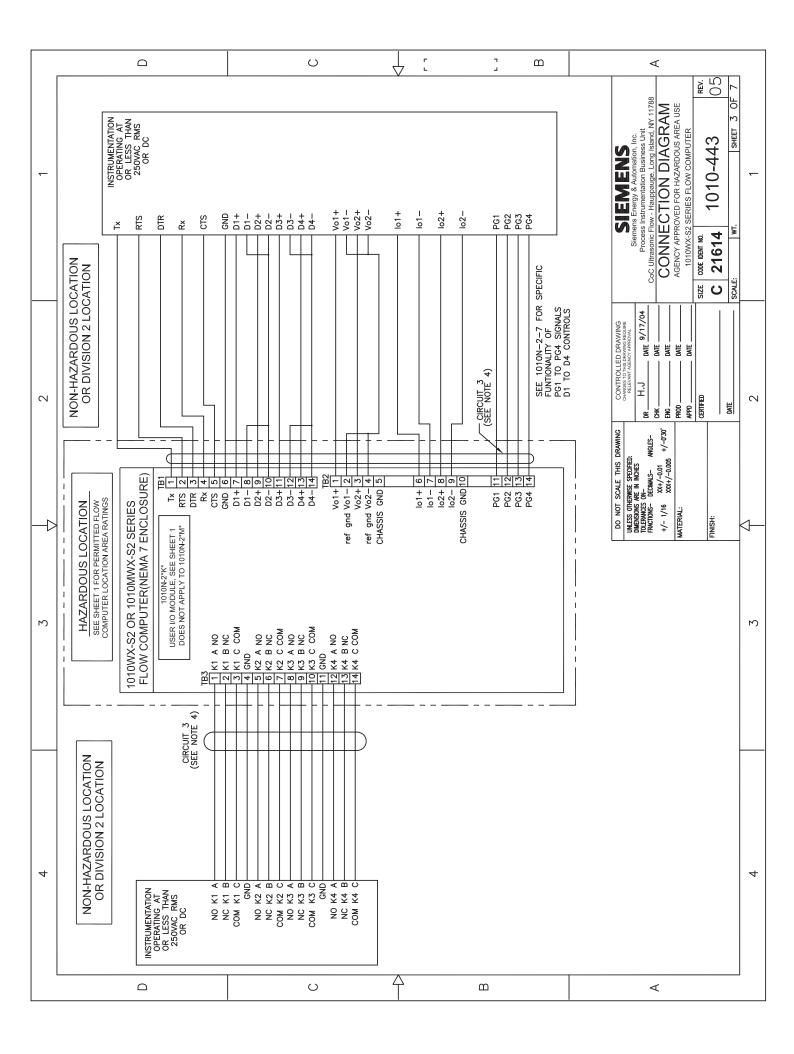


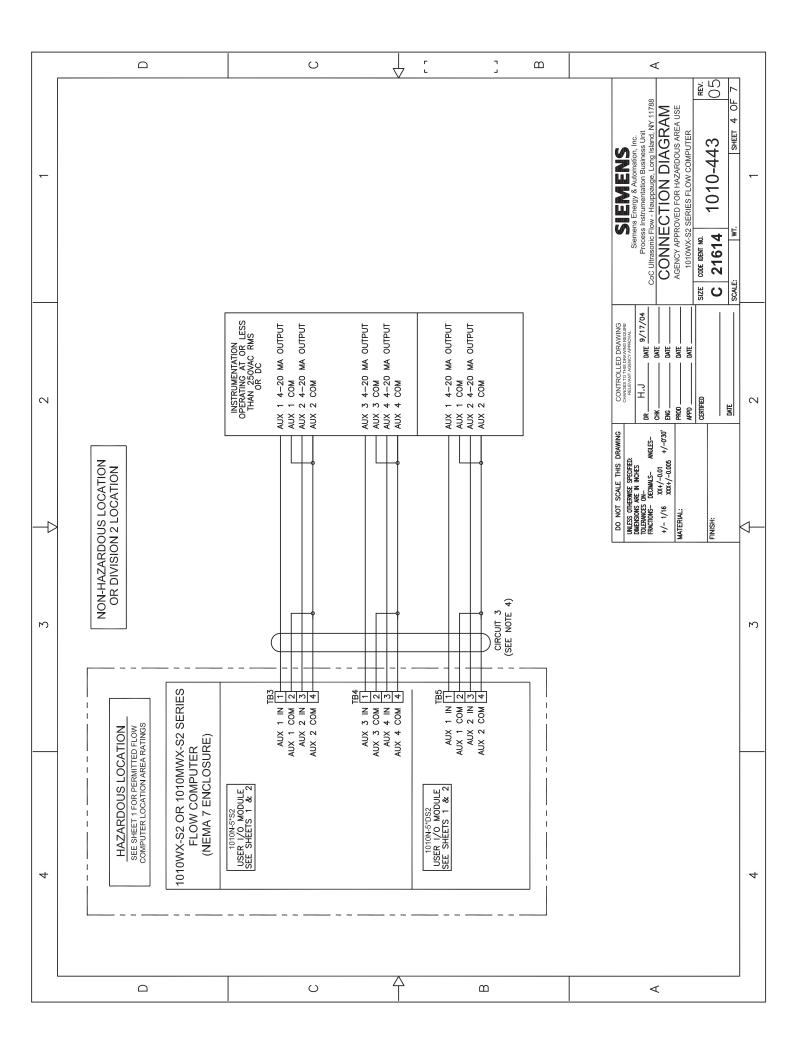


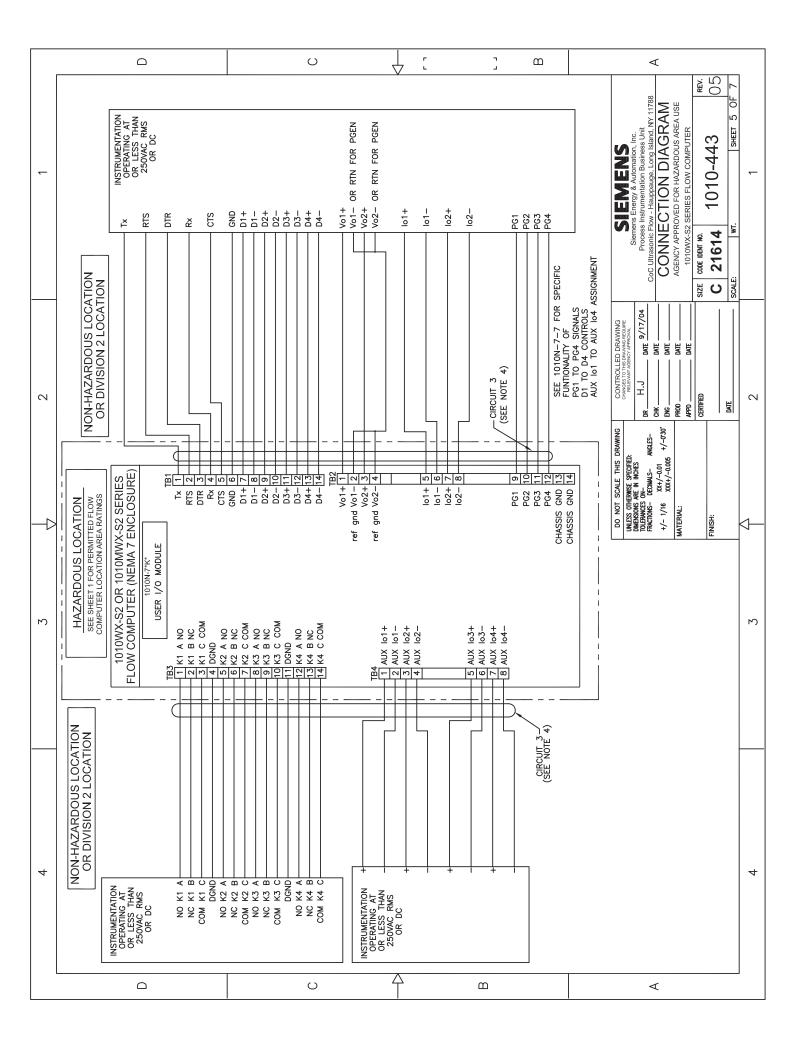


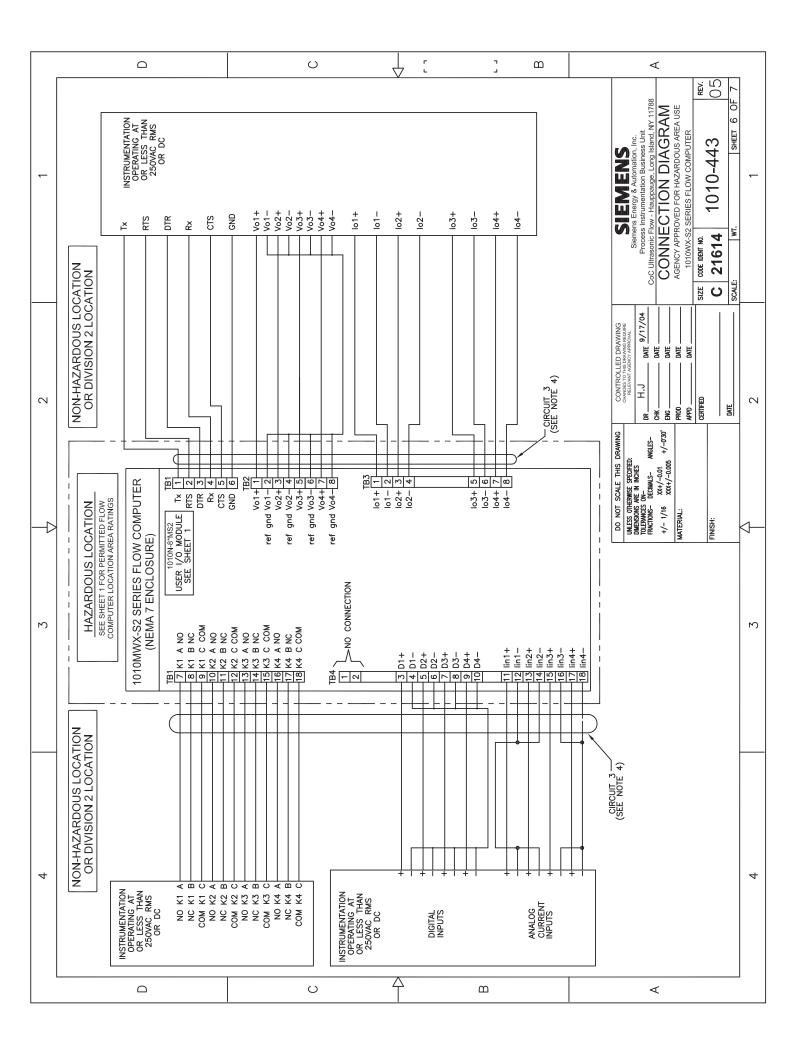


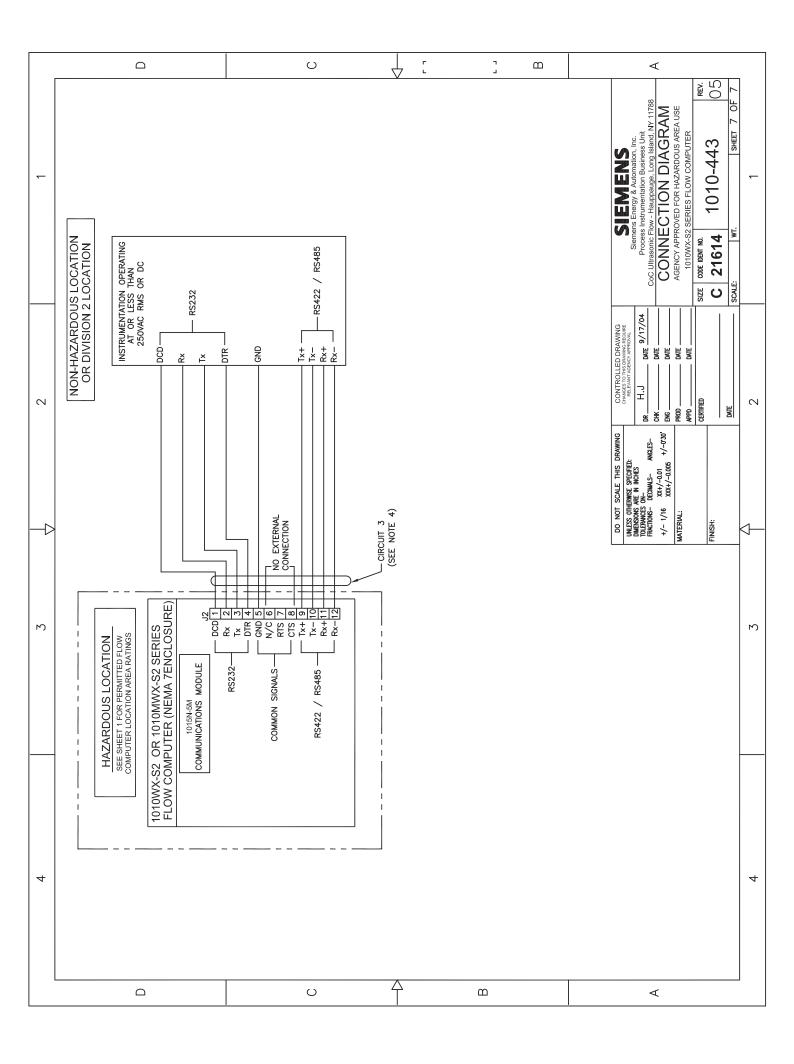


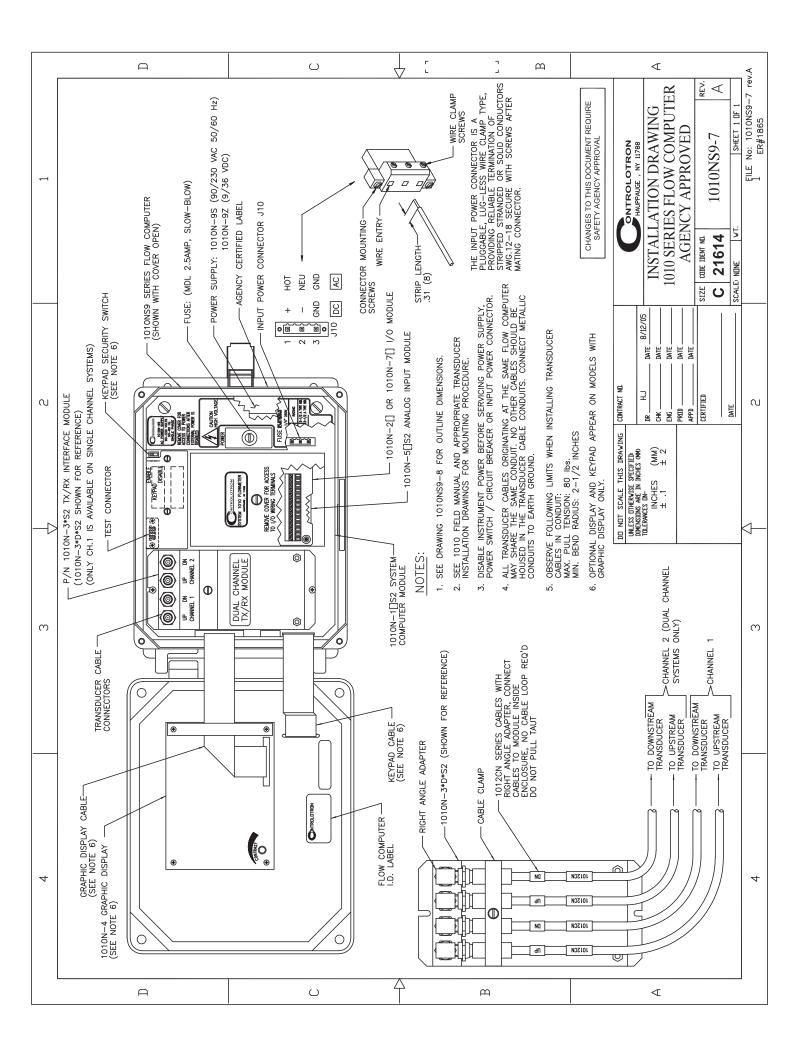


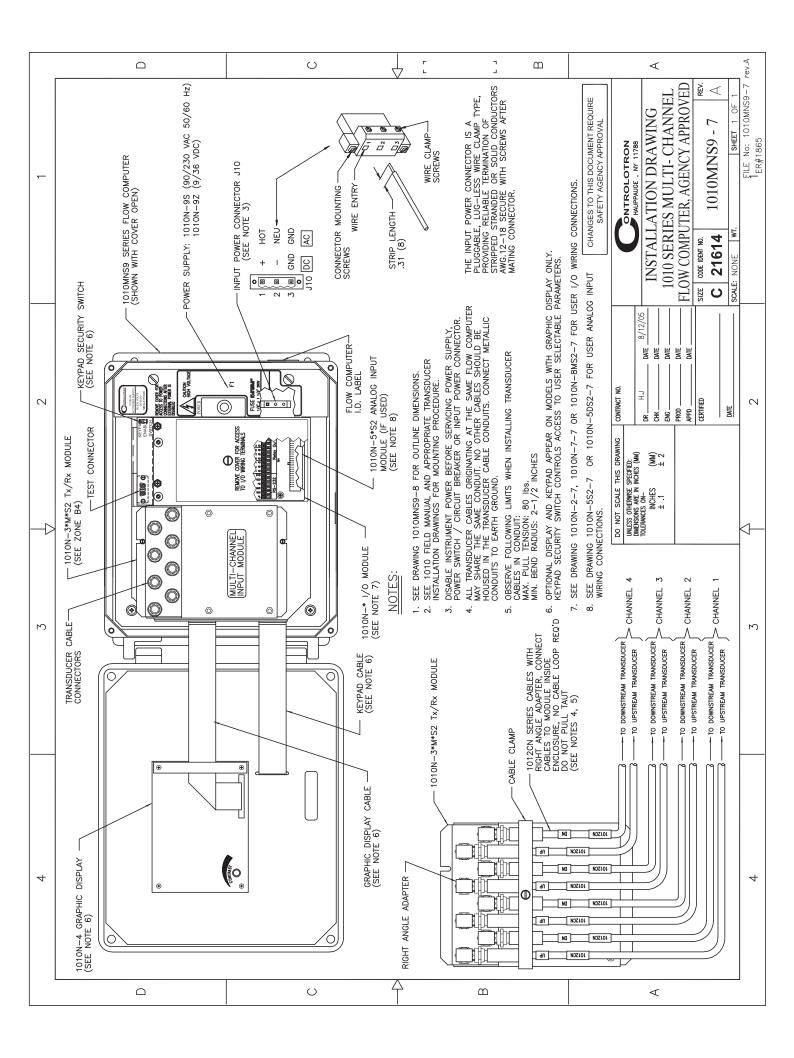


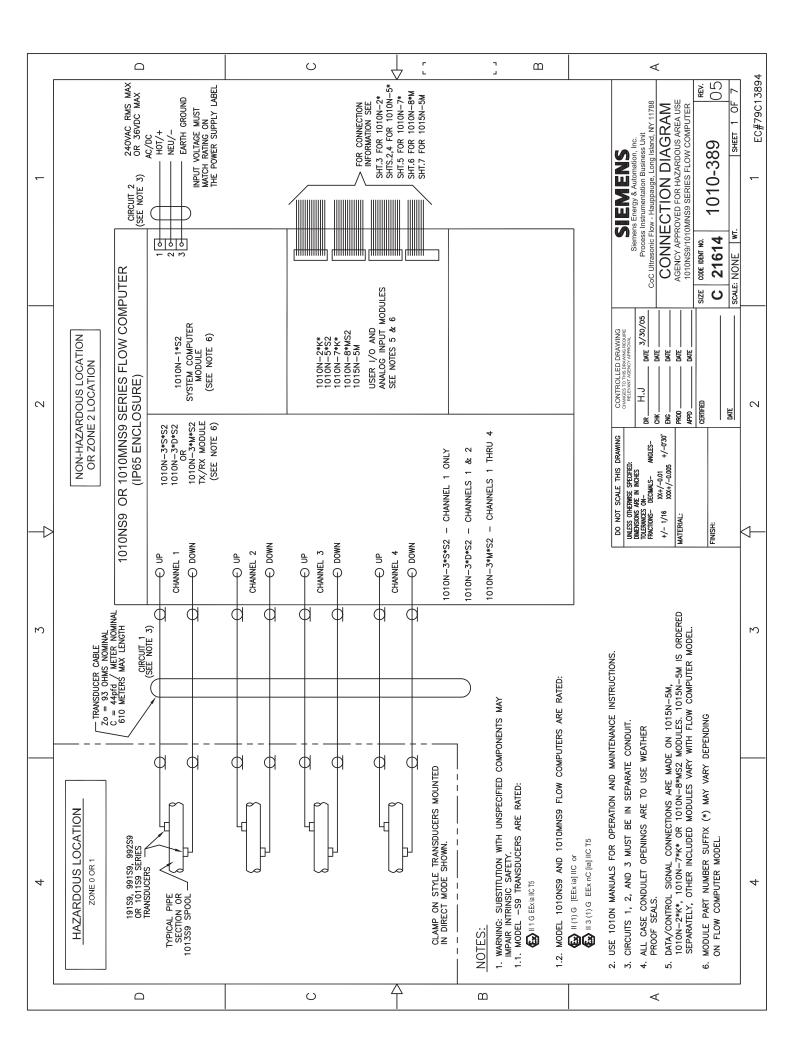


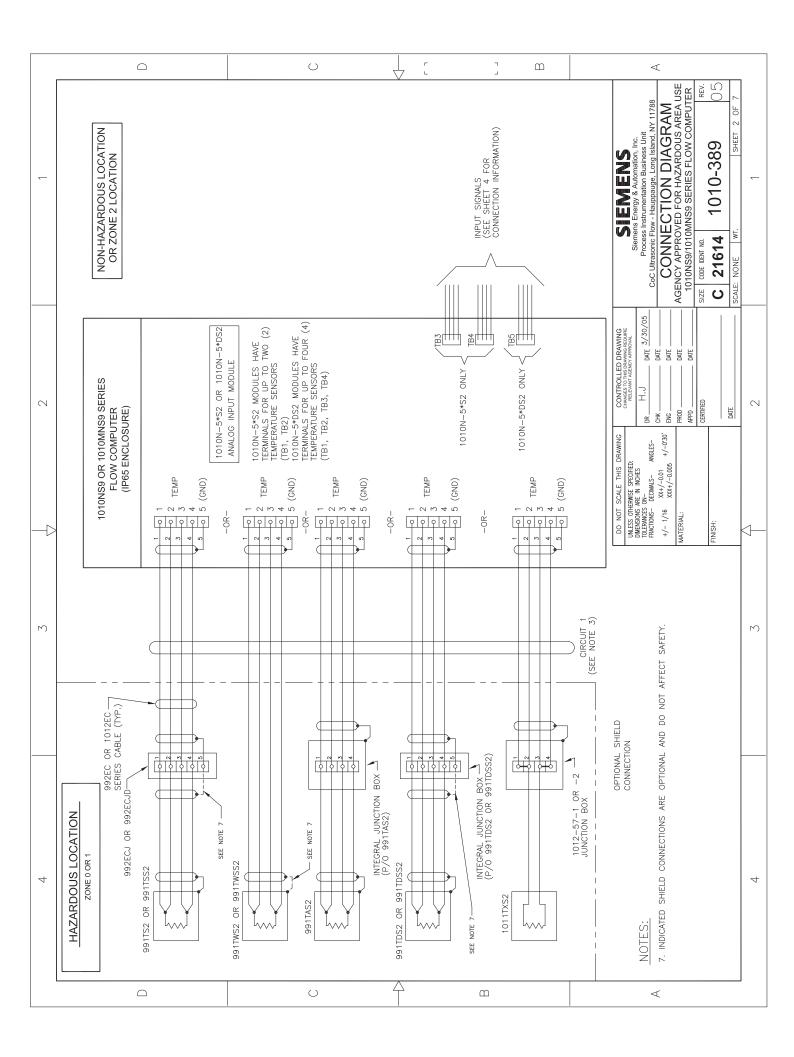


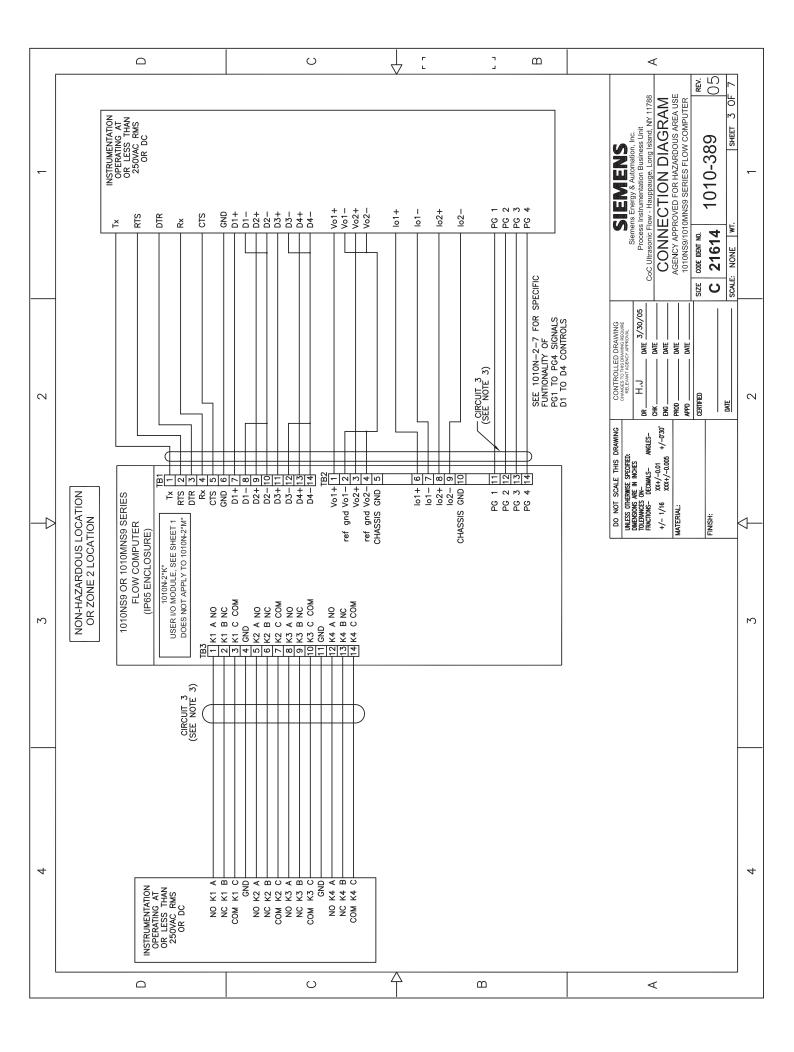


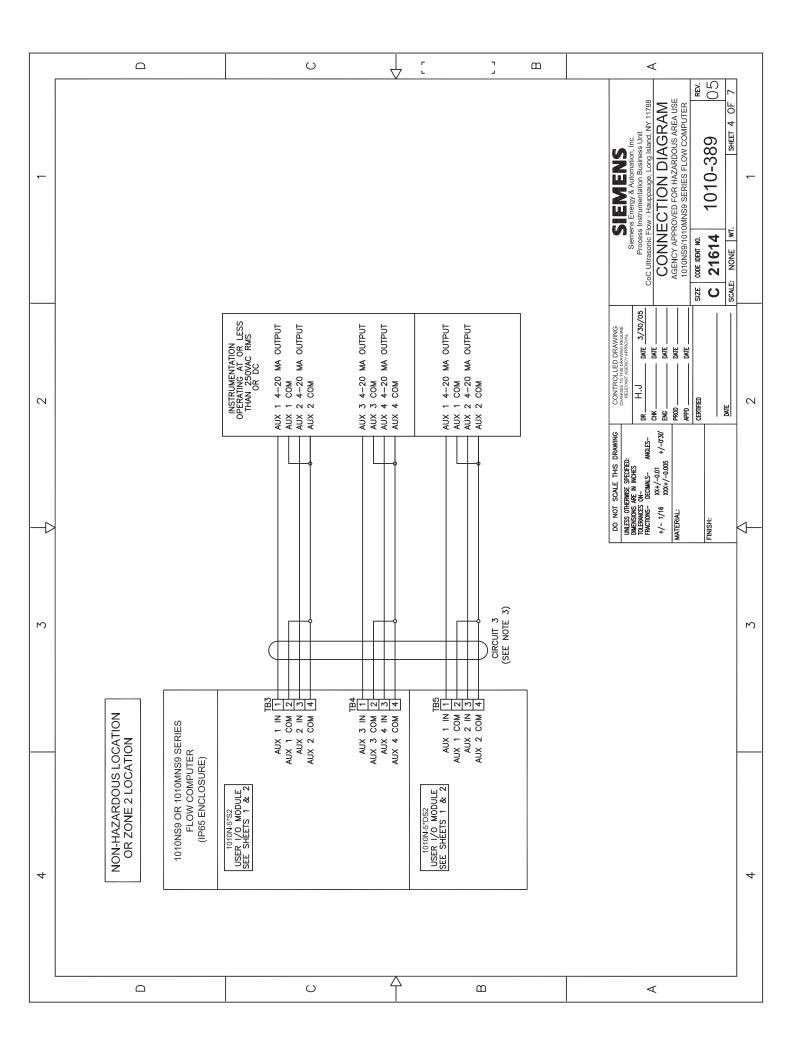


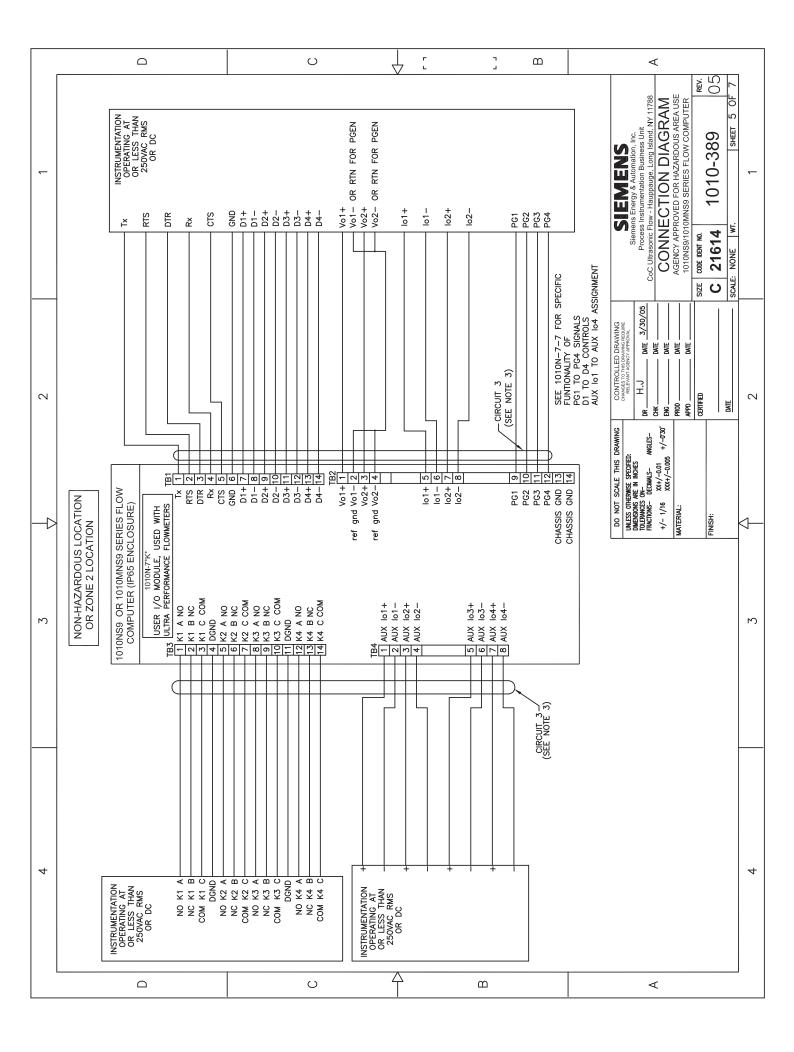


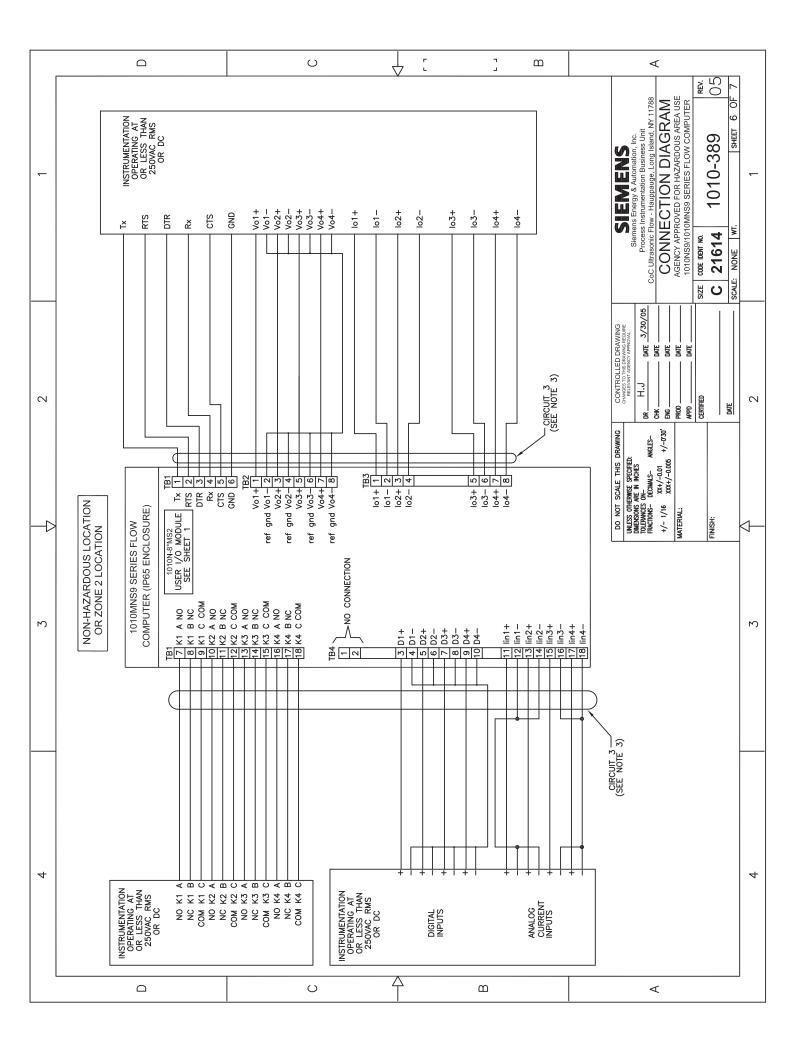


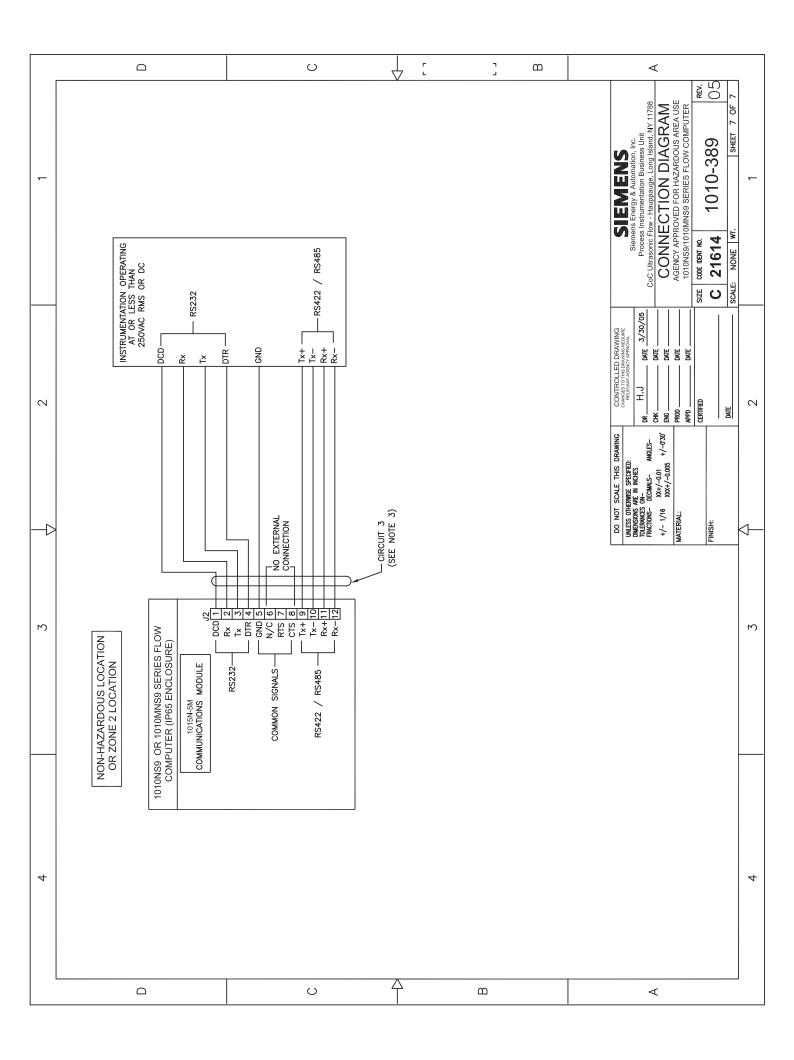


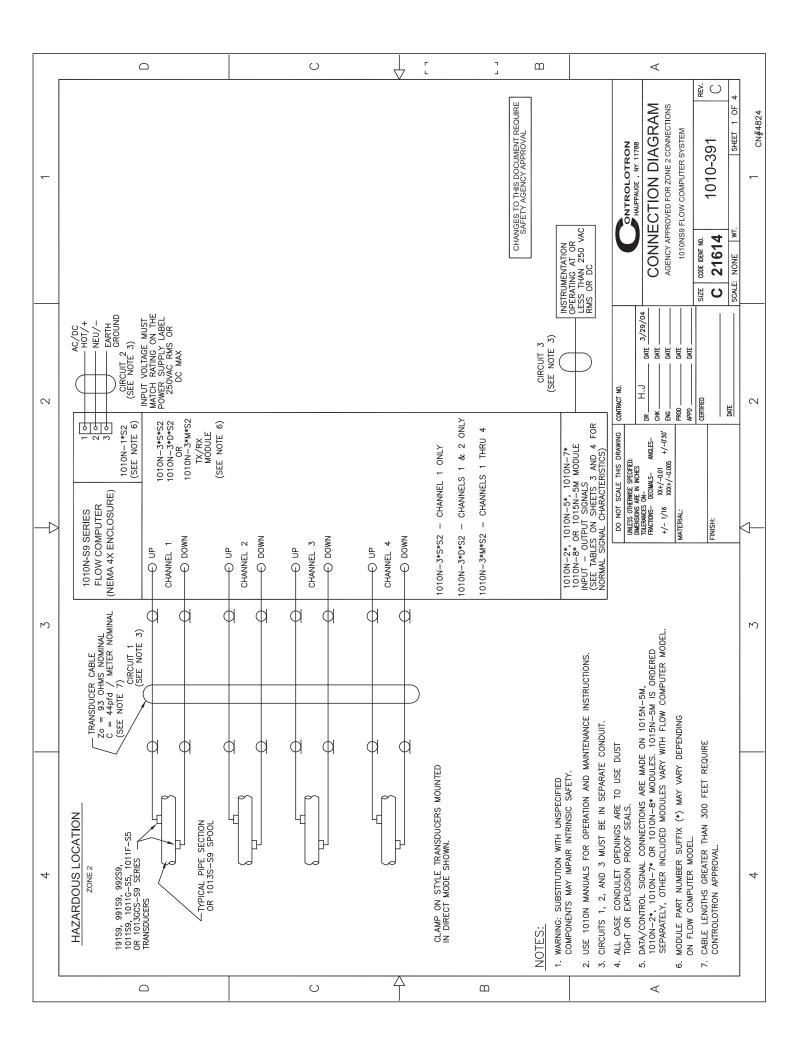


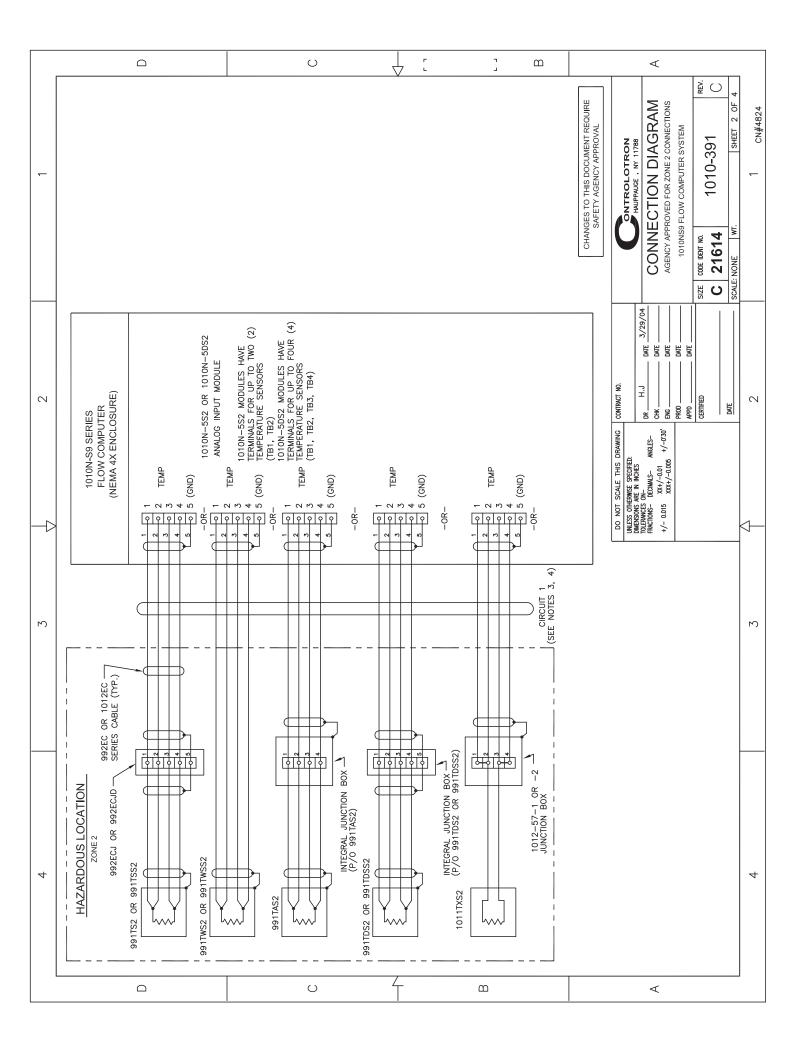


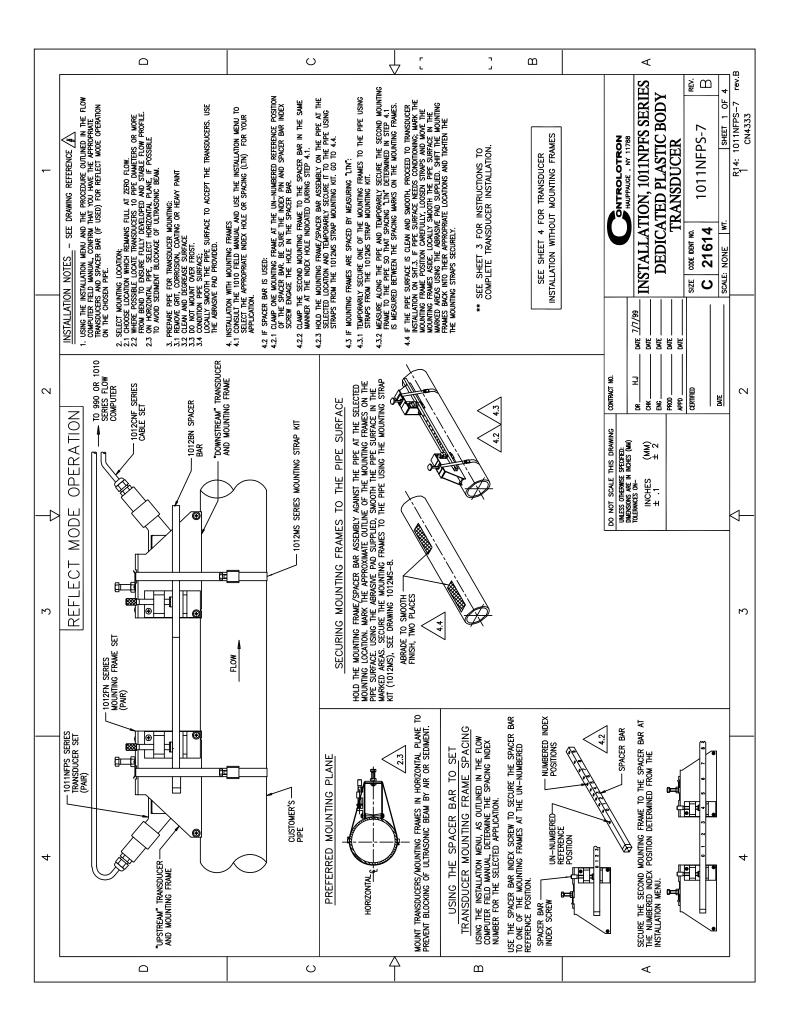


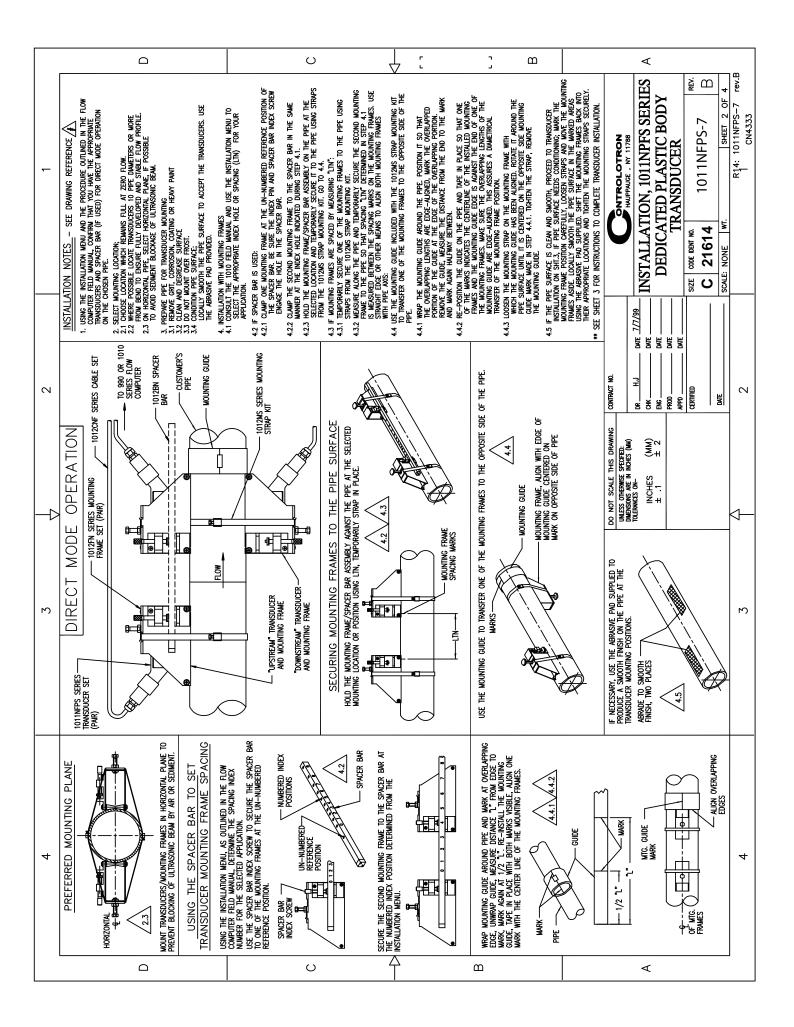


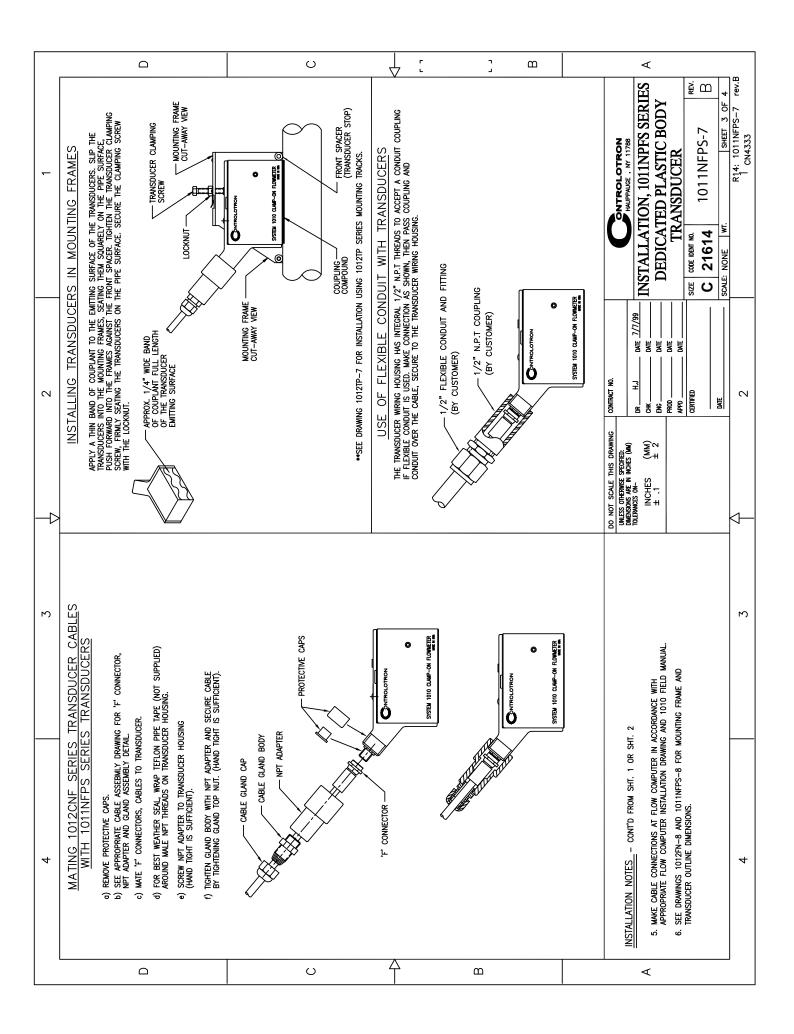


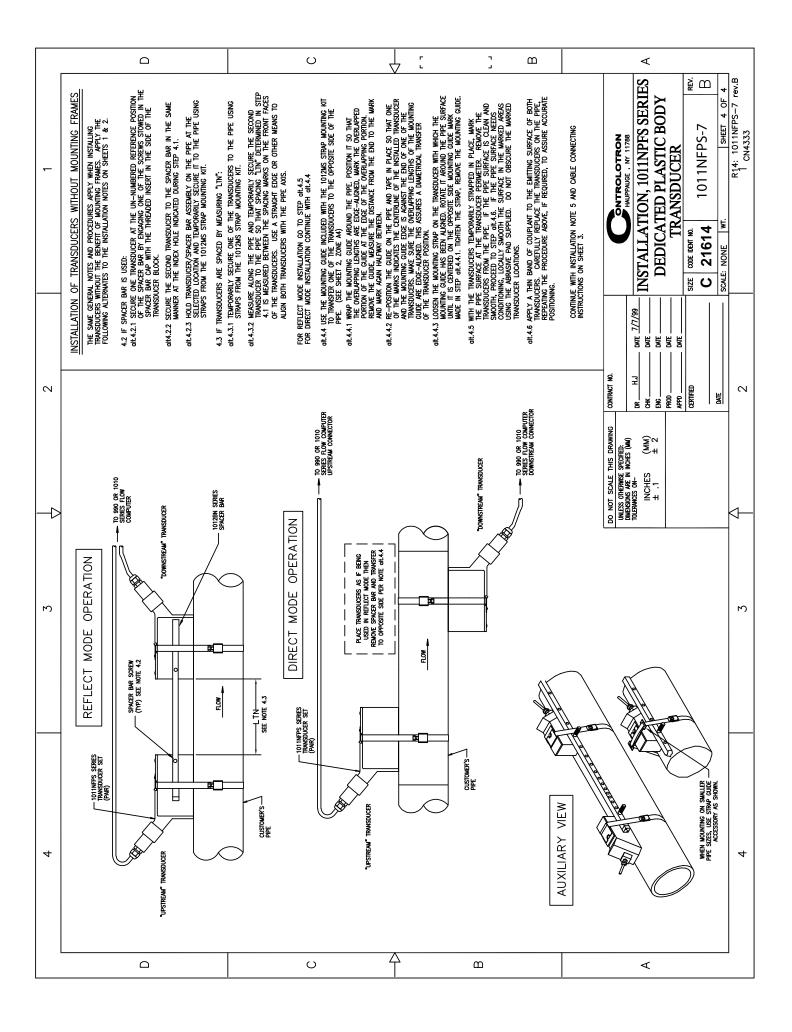




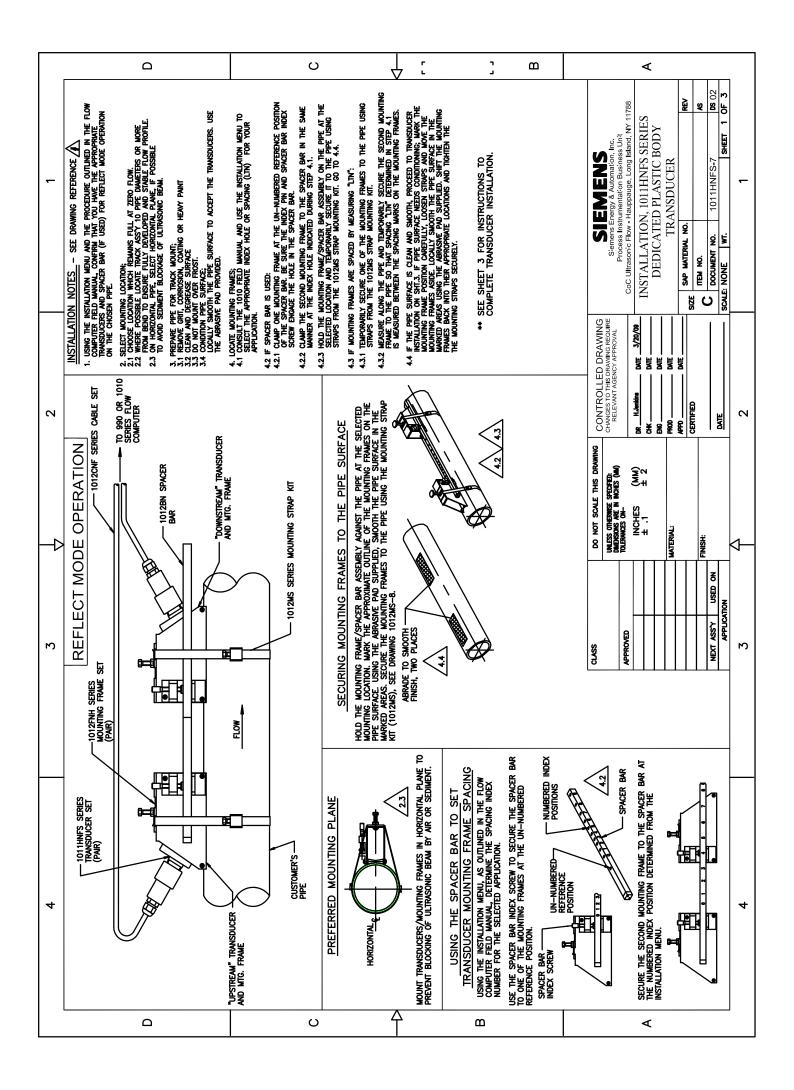


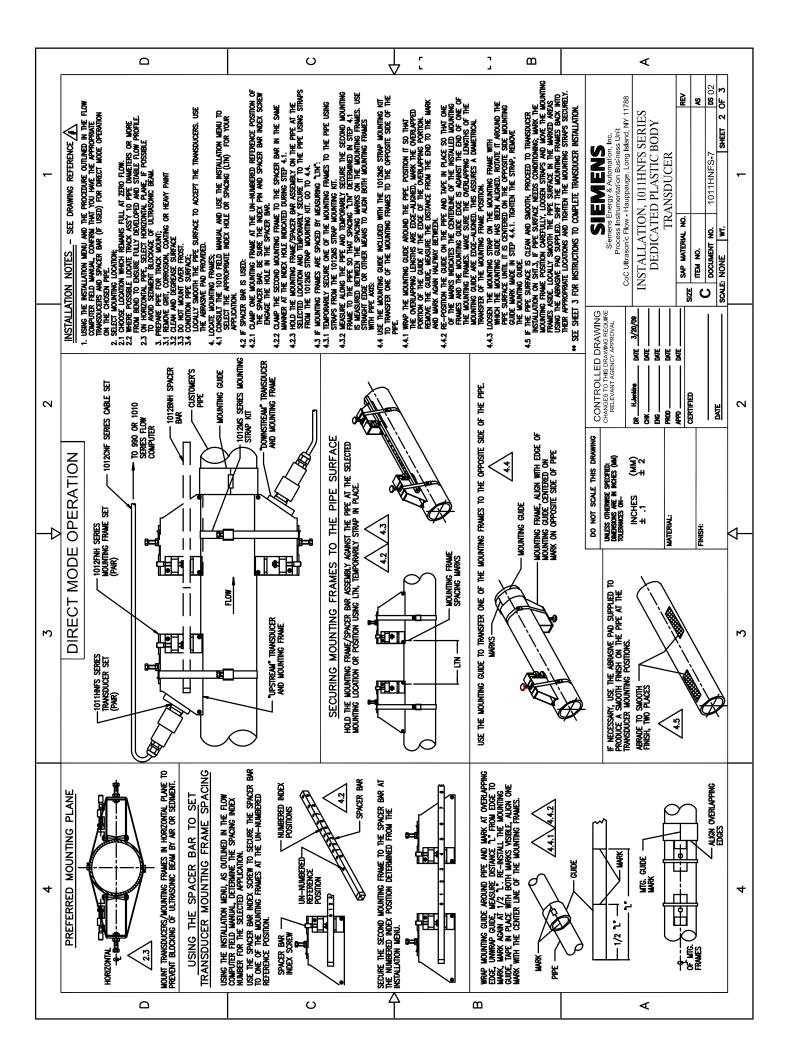

Image: Second			U] 🛛	4	
A A <td>-</td> <td>NORMAL SIGNAL CHARACTERISTICs LOCATION ISEE NOTES 5.4.6) LOCATION NORMAL SIGNAL CHARACTERISTICs LOCATION NORMAL SIGNAL CHARACTERISTICs TB1-1 Tx TB1-2 RTS TB1-3 RTS TB1-4 Tx TB1-5 RTS TB1-6 CTS TB1-7 RX TB1-8 K1<nc< td=""> TB1-9 K1<nc< td=""> TB1-10 K2<no< td=""> TB1-11 K2<no< td=""> TB1-12 C2 TB1-12 C2</no<></no<></nc<></nc<></td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>D3+ 0 to 5 Vac D3+ 0 to 5 Vac D3+ 0 vac D4+ 0 Vac D1+ 0 Vac D2+ 0 Vac D2+ 0 Vac D2+ 0 Vac D2+ 0 Vac D10- 15 Vac D10- 16 Vac D10- 17 Vac D10- 0 Vac D10- 17 Vac D10- 16 Vac D10- 17 Vac D10- 16 Vac D10- 16 Vac D10- 16 Vac D10- 0 Vac D10- 0 Vac D10- 0 Vac D10- 0 Vac</td> <td>CONNECTION DIAGRAM AGENCY APPROVED FOR ZONE 2 CONNECTIONS 1010NS9 FLOW COMPUTER SYSTEM SIZE 000E IDDI MO. 1010NS9 FLOW COMPUTER SYSTEM 1010NS9 FLOW COMPUTER SYSTEM SIZE 000E IDDI MO. SIZE 000E IDDI MO. S</td> <td>1 CN#4824</td>	-	NORMAL SIGNAL CHARACTERISTICs LOCATION ISEE NOTES 5.4.6) LOCATION NORMAL SIGNAL CHARACTERISTICs LOCATION NORMAL SIGNAL CHARACTERISTICs TB1-1 Tx TB1-2 RTS TB1-3 RTS TB1-4 Tx TB1-5 RTS TB1-6 CTS TB1-7 RX TB1-8 K1 <nc< td=""> TB1-9 K1<nc< td=""> TB1-10 K2<no< td=""> TB1-11 K2<no< td=""> TB1-12 C2 TB1-12 C2</no<></no<></nc<></nc<>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	D3+ 0 to 5 Vac D3+ 0 to 5 Vac D3+ 0 vac D4+ 0 Vac D1+ 0 Vac D2+ 0 Vac D2+ 0 Vac D2+ 0 Vac D2+ 0 Vac D10- 15 Vac D10- 16 Vac D10- 17 Vac D10- 0 Vac D10- 17 Vac D10- 16 Vac D10- 17 Vac D10- 16 Vac D10- 16 Vac D10- 16 Vac D10- 0 Vac D10- 0 Vac D10- 0 Vac D10- 0 Vac	CONNECTION DIAGRAM AGENCY APPROVED FOR ZONE 2 CONNECTIONS 1010NS9 FLOW COMPUTER SYSTEM SIZE 000E IDDI MO. 1010NS9 FLOW COMPUTER SYSTEM 1010NS9 FLOW COMPUTER SYSTEM SIZE 000E IDDI MO. SIZE 000E IDDI MO. S	1 CN#4824
		NORMAL SIGNAL CHARACTERISTICS INORMAL SIGNAL CHARACTERISTICS LOCATION INCENTION OF INCENTION LOCATION INCENTION OF INCENTION TB3-1 1 TB3-2 1 I IN 1 TB3-2 1 I IN 2 TB3-3 15 Vdc Max 4 - 20 mA TB4-4 1 I IN 2 I IN 2 TB4-4 1 I IN 2 I IN 2 I IN 2 TB4-4 I IN 2 I IN 2 I IN 2 TB4-4 I IN 2 I IN 2 I IN 2 TB4-4 I IN 4 I IN 4 I IN 2 TB4-4 I IN 2 I IN 2 TB4-4 I IN 2 I IN 2 TB4-4 I IN 2 I IN 2 TB5 <th< td=""><td></td><td></td><td>CHANGES TO THIS DOCUMENT REQUIRE</td><td></td><td>3 7 2</td></th<>			CHANGES TO THIS DOCUMENT REQUIRE		3 7 2
A NORMAL NOR	4	NORMAL SIGNAL CHARACTERISTICS NORMAL SIGNAL CHARACTERISTICS GEE NOTES & & 0. NORMAL SIGNAL CHARACTERISTICS GEE NOTES & & 0. NORMAL SIGNAL CHARACTERISTICS GEE NOTES & & 0. TOTATION NORMAL SIGNAL CHARACTERISTICS AGE NOTES & & 0. TOTATION NORMAL SIGNAL CHARACTERISTICS OF NORMAL SIGNAL CHARACTER TOTATION TOTATION TOTATION NORMAL SIGNAL CHARACTERISTICS OF NORMAL SIGNAL CHARACTER TOTATION TOTATION <	IB-1-1 D4+ 0' vac TB-1-1 D4+ 0' vac TB2-1 Vo1+ 0' vac TB2-2 Vo1+ 0' vac TB2-4 Vo1+ 0' vac TB2-4 Vo2+ 0' vac TB2-4 Vo2- 0' vac TB2-5 No Connection 0' vac TB2-6 No Connection 0' vac TB2-7 Io1- 0' vac TB2-8 No Connection 0' vac TB2-9 Io2- 0' vac TB2-9 Io2- 0' vac TB2-9 Io2- 0' vac TB2-10 NO CONNECTION TB2-11 PGEN 1+ 0' vac TB2-12 PGEN 1+ 0' vac TB2-12 PGEN 12+ 0' vac TB2-12 PGEN 12+ 0' vac	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	TB3-13 K4 NC 0 50 Vdc TB3-14 K4 COM 0 50 Vdc		4

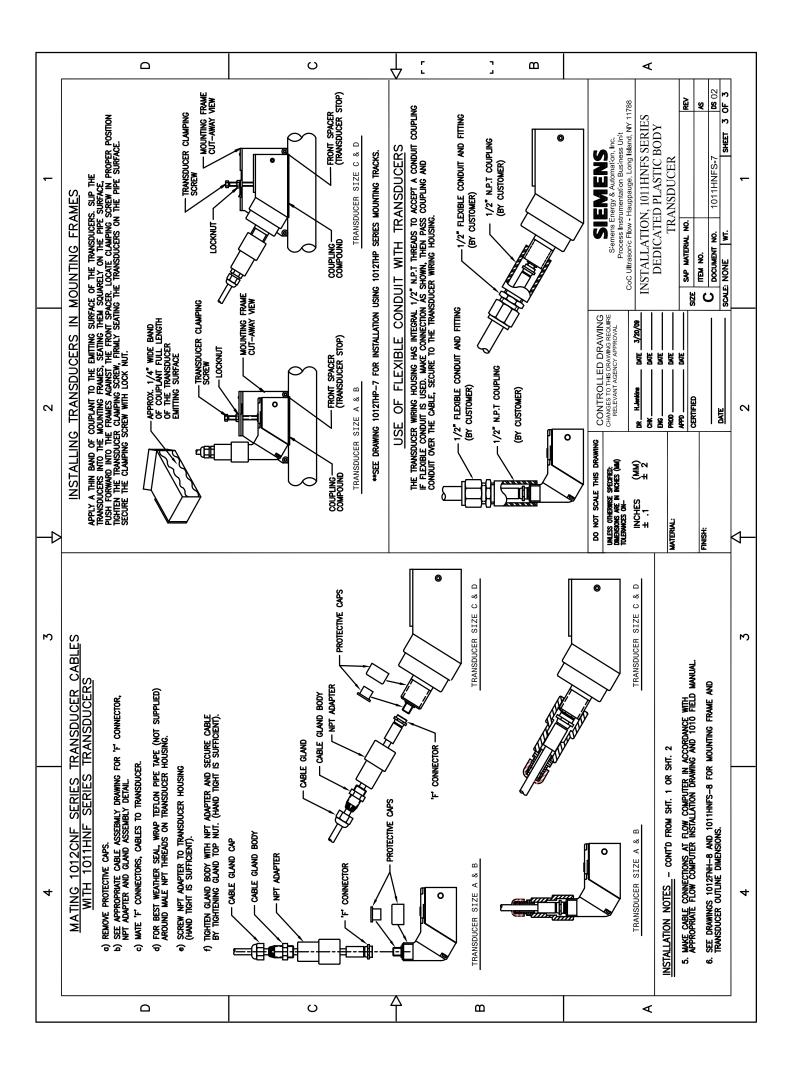

	U]	<
Indext Signal CHARACTERISTICs Indext Signal CHARACTERISTICs MODULE NORMAL SIGNAL CHARACTERISTICs MODULE LOCATION Indext Signal CHARACTERISTICs (SEE NURL) MODULE LOCATION Indext Signal CHARACTERISTICs (SEE NURL) MODULE LOCATION Indext Signal CHARACTERISTICs (SEE NURL) MODULE LOCATION J2-2 RX to ±12 Vdc 22 mA J2-4 DTR to ±12 Vdc 22 mA J2-5 GND 0 Vdc 75 mA J2-6 GND 0 Vdc 22 mA J2-6 CTS to ±12 Vdc 22 mA J2-6 CTS to ±12 Vdc 22 mA J2-7 RTS to ±12 Vdc 22 mA J2-10 TX+ 0 to 5 Vdc 25 mA J2-117 RX+ 0 to 5 Vdc 25 mA				CHANGES TO THIS DOCUMENT REQUIRE SAFETY AGENCY APPROVAL. SAFETY AGENCY APPROVAL. AGENCY APPROLOTION AGENCY AFFINITION AGENCY AFFINITION
2 ARACTERISTICS	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	TB2-14 NO CONNECTION TB3-1 K1 NO 0 50 Vdc 250 mA TB3-2 K1 COM 0 -50 Vdc 250 mA TB3-3 K1 COM 0 -50 Vdc 250 mA TB3-4 NO CONNECTION TB3-5 K2 NO 0 -50 Vdc 250 mA TB3-5 K2 NO 0 -50 Vdc 250 mA TB3-6 K3 NO 0 -50 Vdc 250 mA TB3-7 K2 COM 0 -50 Vdc 250 mA TB3-9 K3 NO 0 -50 Vdc 250 mA	0 - 50 Vdc - 50 Vdc - 50 Vdc 0 - 50 Vdc - 50 Vdc Max. 4 4 - 30 Vdc Max. 4 4	DO NOT SCALE THIS DRAWING DO NOT SCALE THIS DRAWING UNLESS OFFERIE: DURENSIONS ARE IN INCHES TRUCTONS: DECLAULS- ANGLES- H/- 1/16 XXH/-0.001 +/-070' MATERIAL: FINISH:
	0 to 5 Vdc 0 Vdc 0 Vdc 0 0 Vdc 0 Vdc 0 0 Vdc 0 Vdc 0 0 - 10 Vdc 0 - 4 - 0 0 - 33 Vdc 4 - - 4 - 0 - 4 - 0 - 4 - 0 - 4 - 0 - 4 - 0 - 4 - 0 - 0 - 0 0 - 0 0 - 0 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 0 0	TB3-2 K1 NC 0 50 Vdc TB3-3 K1 COM 0 50 Vdc TB3-4 N0 CMBCTION 0 50 Vdc TB3-5 K2 NC 0 50 Vdc TB3-6 K2 NC 0 50 Vdc TB3-7 K2 COM 0 50 Vdc TB3-8 K3 NO 0 50 Vdc TB3-9 K3 NO 0 50 Vdc TB3-11 NG CMBCTION 0 50 Vdc TB3-11 NG CMBCTION 0 50 Vdc	K4 NC K4 COM AUX 101+ AUX 102+ AUX 102+ AUX 102- AUX 103+ AUX 103- AUX 103- AUX 104+ AUX 104+	4
Ω	U	Δ	۵	<

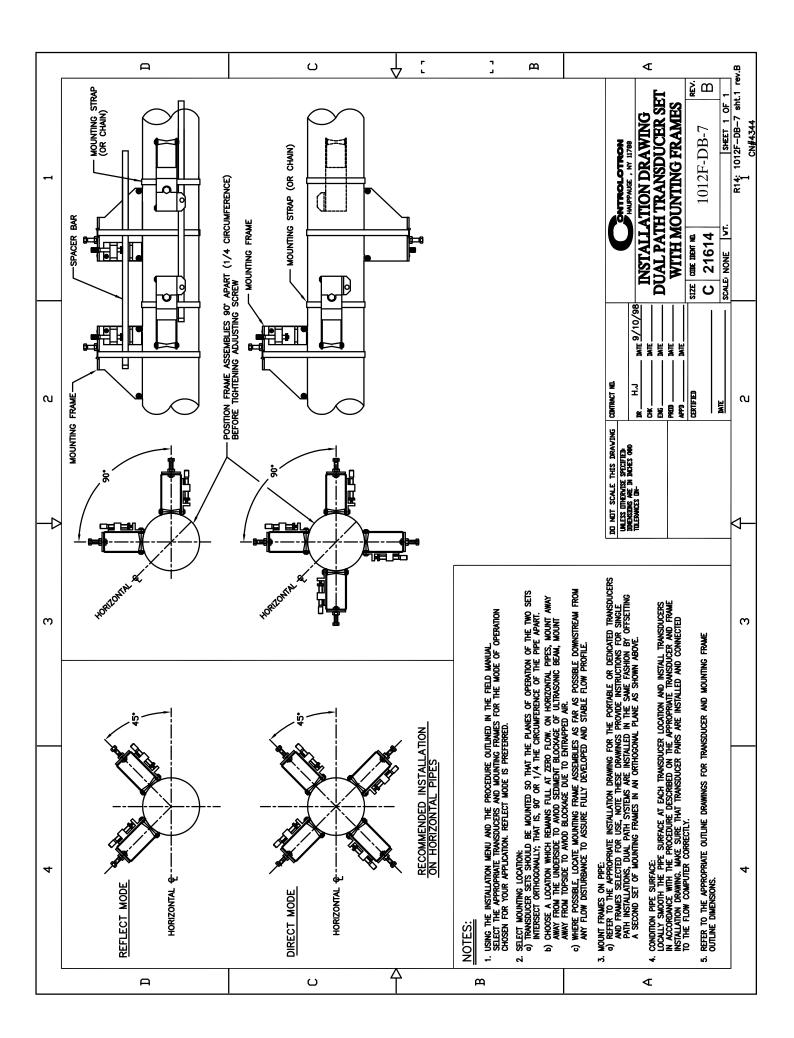

	Ω	U	Ļ [] m		<
-				10-443 3	CHANGES TO THIS DOCUMENT REQUIRE SAFETY AGENCY APPROVAL	SIEMENS Siemens Erengy & Audomation, Inc. Process Instrumentation Business Unit Coc Ultrasonic Flow - Hauppauge, Long Island, INY 11788 Coc Ultrasonic Flow - Hauppauge, Long Island, INY 11788 Coc Ultrasonic Flow - Hauppauge, Long Island, INY 11788 Coc Ultrasonic Flow - Hauppauge, Long Island, INY 11788 Coc Ultrasonic Flow - Hauppauge, Long Island, INY 11788 Coc Ultrasonic Flow - Hauppauge, Long Island, INY 11788 Connection DidGRAM SELECTION AGENCY APPROVED 1011N SERIES TRANSDUCERS Size Optimized Internation A 21614 1011NS2-7 Scale: M. Con4451 Con445160
2	TO CERTIFIED FLOW COMPUTER SEE NOTES 1 & 2 I012 SERIES TRANSDUCER CABLE		G 990-104 OR 990-105 S II, DIVISION 2, GPS F, G	G 1010-304, 1010-341 OR 10 S II, DIVISION 2, GPS E, F, (CHANG REQUIRE S	WING CONTRACT NO. DR HJ DATE DR DATE DATE DR DATE DATE END DATE DATE PROD DATE DATE APPO DATE DATE DATE DATE DATE
	1012 SERIES		COMPUTERS- JPS A - G, PER DRAWINC D, SUITABLE FOR CLAS	V COMPUTERS- JPS A - G, PER DRAWINC D, SUITABLE FOR CLAS 3. PUTER FIELD MANUAL	MENSIONS NTS MAY	DO NOT SCALE THIS DRAWING UNLESS OTHERNES PECHER: UNLESS ORE IN INCHES (MU) TOLEWICSS ORE IN INCHES (MU) TOLEWICSS ORE IN INCHES (MU)
ю		ONE TRANSDUCER OR 10110S SERIES TRANSDUCER OR 1011GCN SERIES TRANSDUCER OR 1011GCN SERIES TRANSDUCER OR 00NE TRANSDUCER OF PAIR SHOWN)	VG TRANSDUCER -S2 ZE)-S2 OWING DRAWINGS: OWING DRAWINGS: ENCY APPROVED FLOW SS I, II, DIVISION 1, GROU DIVISION 2, GROUPS A -	GENCY APPROVED FLOW GENCY APPROVED FLOW (SS I, II, DIVISION 1, GROI DIVISION 2, GROUPS A - 339, 1010-342 OR 1010-44 PROPRIATE FLOW COM INSTRUICTIONS	UTLINE INSTALLATION DIMENSIOI UNSPECIFIED COMPONENTS MAY	M
4	TRANSDUCER	ONE TRANSDUC	INSTALL ONE OF THNE FOLLOWING TRANSDUCER P/N 1011N(MODEL CODES)-(SIZE)-S2 P/N 1011GCN(MODEL CODES)-(SIZE)-S2 IN ACCORDANCE WITH THE FOLLOWING DRAWINGS: a. FOR USE WITH 994 SERIES AGENCY APPROVED FLOW COMPUTERS- INTRINSICALLY SAFE FOR CLASS I, II, DIVISION 1, GROUPS A - G, PER DRAWING 990-104 OR 990-105 NON-INCENDIVE FOR CLASS I, II, DIVISION 1, GROUPS A - D, SUITABLE FOR CLASS II, DIVISION 2, GPS F,	 FOR USE WITH 1010 SERIES AGENCY APPROVED FLOW COMPUTERS- INTRINSICALLY SAFE FOR CLASS I, II, DIVISION 1, GROUPS A - G, PER DRAWING 1010-304, 1010-341 OR 1010-443 NON-INCENDIVE FOR CLASS I, DIVISION 2, GROUPS A - D, SUITABLE FOR CLASS II, DIVISION 2, GPS E, F, G PER DRAWING 1010-304, 1010-339, 1010-342 OR 1010-443. SEE DRAWING 1011NPS-7 AND APPROPRIATE FLOW COMPUTER FIELD MANUAL 	SEE DRAWING 1011NPS-8 FOR OUTLINE INSTALLATION DIMENSIONS WARNING: SUBSTITUTION WITH UNSPECIFIED COMPONENTS MAY IMPAIR INTRINSIC SAFETY	4
					3. SEE 4. WAR	<

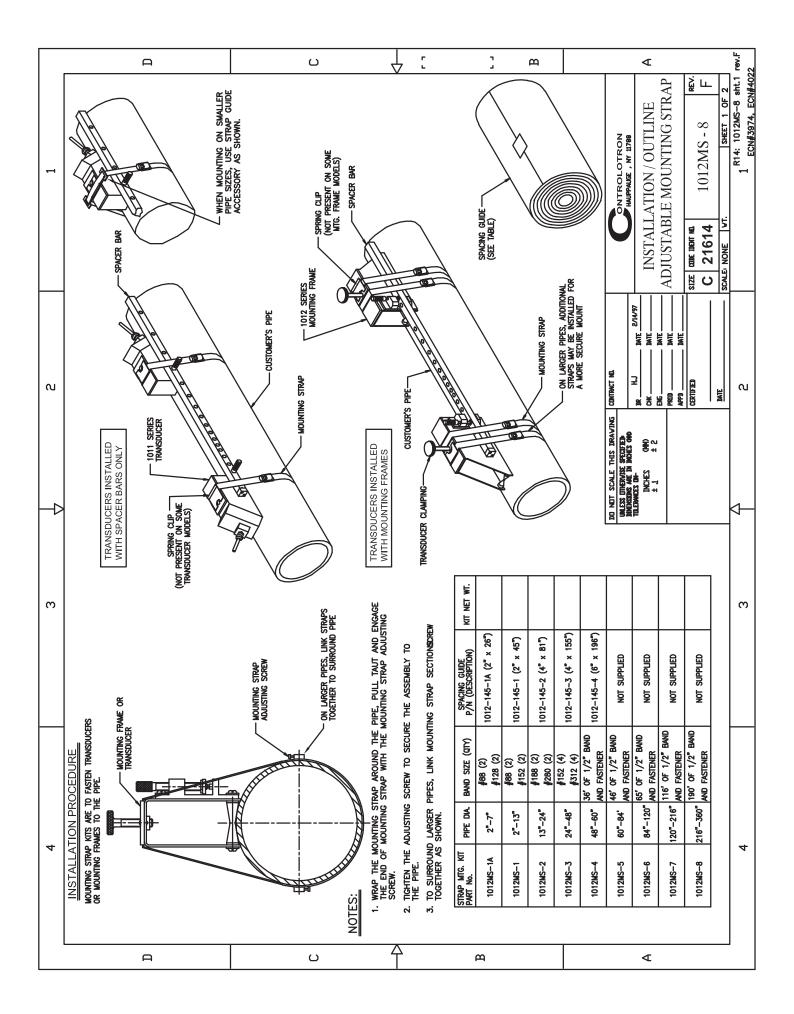
	Ω	U	\downarrow	r L	r L	ш		<	_
~							CHANGES TO THIS DOCUMENT REQUIRE SAFETY AGENCY APPROVAL	CONNECTION DIAGRAM CONNECTION DIAGRAM AGENCY APPROVED 1011N SERIES SIZE 006 ID61 M0 111N SERIES 21614 1011NS	scale: wr. sheer 1 of 1 1 0 1 1 0 0 1 1 1 4931 1
2 TO CERTIFIED FI OW COMPLITER	1012 SERIES TRANSDUCER CABLE				464.	Δ	CONTRACT NO.	BR H.J DATE 11/04/04 CHK DATE DATE DATE ENG DATE DATE DATE PR00 DATE DATE DATE APP0 DATE DATE DATE CERTIFED DATE DATE DATE	2
	1012 SERIE			°S-(SIZE)-S9) hPUTERS- 010-422 OR 1010-464.	b. NON-INCENDIVE FOR ZONE 2 PER DRAWING 1010-389, 1010-391, 1010-423 OR 1010-464.	SEE DRAWING 1011NPS-7 OR 1011NFPS-7 AND APPROPRIATE FLOW COMPUTER FIELD MANUAL FOR ADDITIONAL INSTALLATION INSTRUCTIONS.	LATION DIMENSIONS. AY Do NOT SCALE THIS DRAWING	DIREPERSING ARE IN INCHES (MU) TOLEBARS ON- INCHES (MU) +/-01 (MU) 2	
		Ducer Pucer PAIR SHOWN) 		E)-S9 (OR P/N 1011NF JRAWINGS: PPROVED FLOW COM DRAWING 1010-389, 1	VING 1010-389, 1010-3	AND APPROPRIATE FI NSTRUCTIONS.	-OR OUTLINE INSTAL		M
		ONE TRANSDUCER OF PAIR SHOWN)		INSTALL TRANSDUCER P/N 1011NFPS-(SIZE)-S9 (OR P/N 1011NPS-(SIZE)-S9) IN ACCORDANCE WITH THE FOLLOWING DRAWINGS: a. FOR USE WITH 1010 SERIES AGENCY APPROVED FLOW COMPUTERS- INTRINSICALLY SAFE EEX ia IIC T5 PER DRAWING 1010-389, 1010-422 OR 1010-464.	OR ZONE 2 PER DRAV	SEE DRAWING 1011NPS-7 OR 1011NFPS-7 AND AF MANUAL FOR ADDITIONAL INSTALLATION INSTRU	PS-8 OR 1011NFPS-81 TION WITH UNSPECIF FETY.		
4	TRANSDUCER ID LABEL			 INSTALL TRANSDUCER P/N 1011NFPS-(SIZE)-S9 (OR P/N 1011NPS-(SIZE)-S9) IN ACCORDANCE WITH THE FOLLOWING DRAWINGS: FOR USE WITH 1010 SERIES AGENCY APPROVED FLOW COMPUTERS- INTRINSICALLY SAFE EEx ia IIC T5 PER DRAWING 1010-389, 1010-422 OR 	b. NON-INCENDIVE F	2. SEE DRAWING 1011NI MANUAL FOR ADDITIO	 SEE DRAWING 1011NPS-8 OR 1011NFPS-8 FOR OUTLINE INSTALLATION DIMENSIONS. WARNING: SUBSTITUTION WITH UNSPECIFIED COMPONENTS MAY IMPAIR INTRINSIC SAFETY. 		4
		U		<u>م</u>				٩	

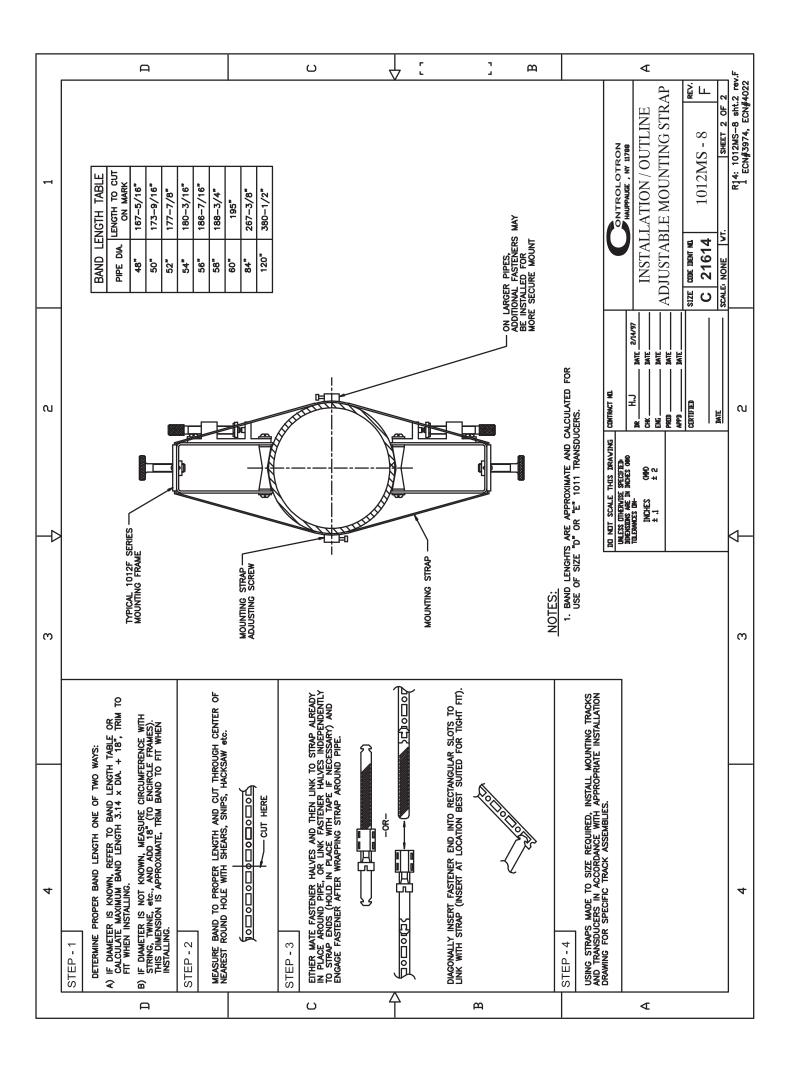


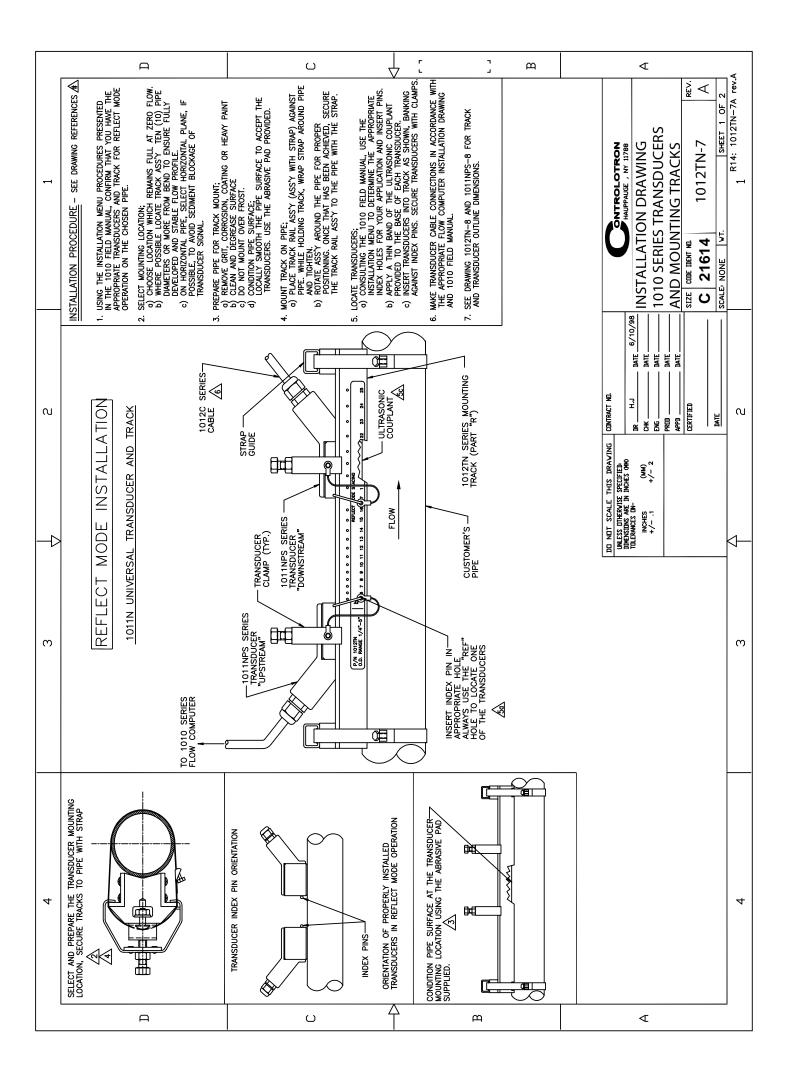


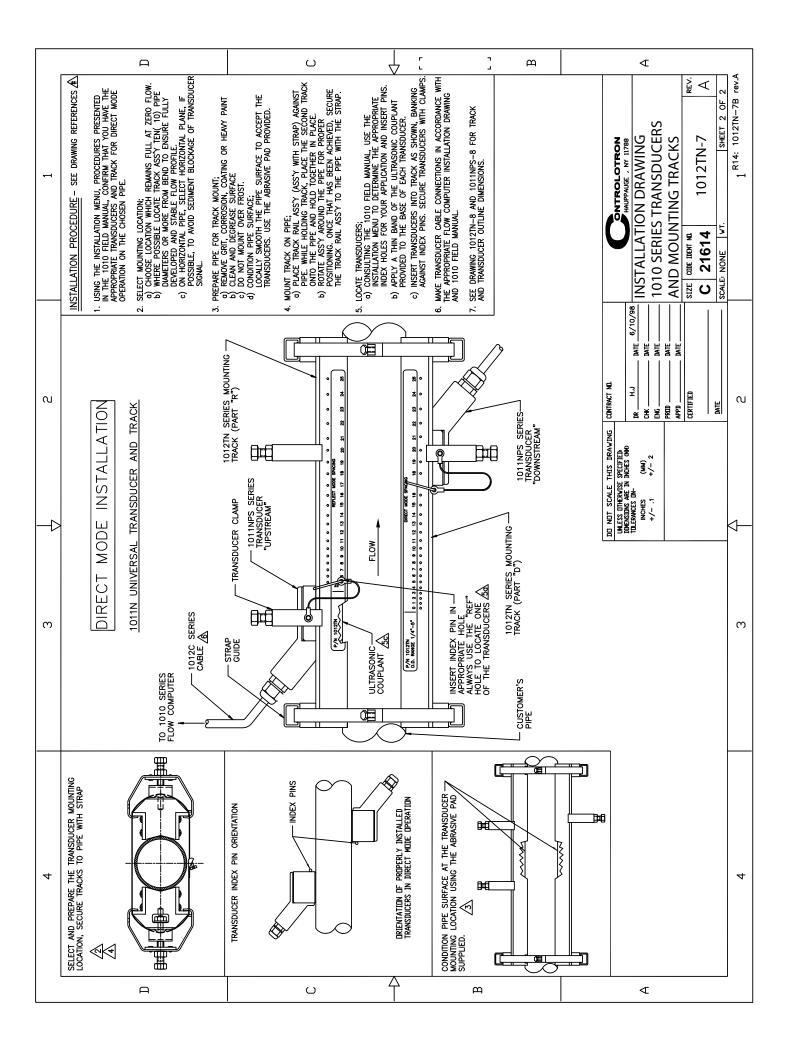


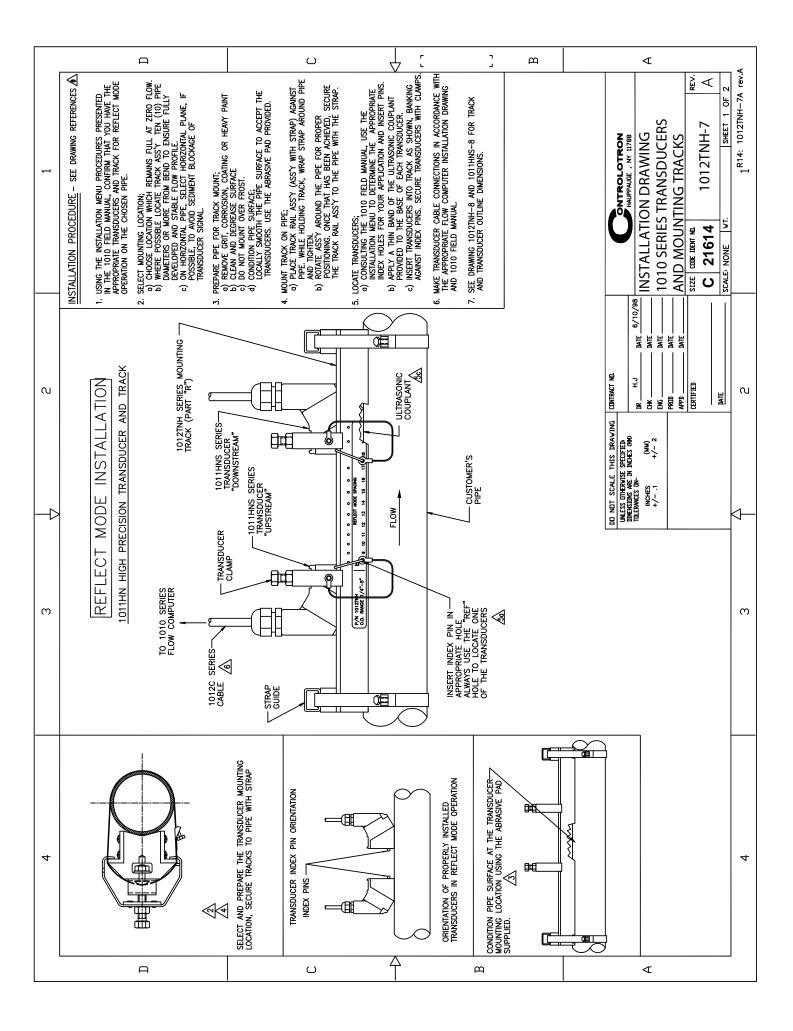

	۵	U	↓ [] 🛛		A	
-				010-443 G	CHANGES TO THIS DOCUMENT REQUIRE SAFETY AGENCY APPROVAL	SIEMENS Siemens Energy & Automation, Inc. Process Instrumentation Business Unit Coc Ultrasonic Flow - Hauppauge, Long Island, NY 17788 INSTALLATION GUIDE, CONNECTION DIAGRAM SELECTION AGENCY APPROVED 1011HN SERIES TRANSDUCERS Size core northogona and and and and and and and and and a	1 CN#516
2	TO CERTIFIED FLOW COMPUTER SEE NOTES 1 & 2 SEE NOTES 1 & 2 1012 SERIES TRANSDUCER CABLE		ERS VINGS: VED FLOW COMPUTERS- ON 1, GROUPS A - G, PER DRAWING 990-104 OR 990-105 ROUPS A - D, SUITABLE FOR CLASS II, DIVISION 2, GPS F, G	DVED FLOW COMPUTERS- DN 1, GROUPS A - G, PER DRAWING 1010-304, 1010-341 OR 1 ROUPS A - D, SUITABLE FOR CLASS II, DIVISION 2, GPS E, F, OR 1010-443. APPROPRIATE FLOW COMPUTER FIELD MANUAL S.	. F	DO NOT SCALE THIS DRAWING CONTRACT NO. DIMENSIONE SECRETS (M) DR H.J.J. DME 11/04/04 IQLENDER (M) DR H.J.J. DME 11/04/04 H.J.D. DRE DME DME DME DME DME DME DME DME DME DM	5
3		ONE TRANSDUCER OR 1011GCHN SERIES TRANSDUCER OR 1011GCHN SERIES TRANSDUCER	STALL ONE OF THE FOLLOWING TRANSDUCERS N 1011HN(MODEL CODES)-(SIZE)-S2 N 1011GCHN(MODEL CODES)-(SIZE)-S2 ACCORDANCE WITH THE FOLLOWING DRAWINGS: FOR USE WITH 994 SERIES AGENCY APPROVED FLOW COMPUTERS- INTRINSICALLY SAFE FOR CLASS I, II, DIVISION 1, GROUPS A - G, PER DRAWING 990-104 OR 990-105 NON-INCENDIVE FOR CLASS I, DIVISION 2, GROUPS A - D, SUITABLE FOR CLASS II, DIVISION 2, GPS PER DRAWING 990-110 OR 990-111.		COMPONENTS MAY		3
4	TRANSDUCER	(ONE TRANSDL	 INSTALL ONE OF THE FOLLOWING TRANSDUCERS P/N 1011HN(MODEL CODES)-(SIZE)-S2 P/N 1011GCHN(MODEL CODES)-(SIZE)-S2 IN ACCORDANCE WITH THE FOLLOWING DRAWINGS: a. FOR USE WITH 994 SERIES AGENCY APPROVED FL INTRINSICALLY SAFE FOR CLASS I, II, DIVISION 1, G NON-INCENDIVE FOR CLASS I, DIVISION 2, GROUPS PER DRAWING 990-110 OR 990-111. 	 b. FOR USE WITH 1010 SERIES AGENCY APPRC INTRINSICALLY SAFE FOR CLASS I, II, DIVISION 2, G NON-INCENDIVE FOR CLASS I, DIVISION 2, G PER DRAWING 1010-304, 1010-339, 1010-342 2. SEE DRAWING 1011HNS-7 OR 1011HNFS-7 AND FOR ADDITIONAL INSTALLATION INSTRUCTION 	 SEE DRAWING 1011HNS-8 OR 1011HNFS-8 FOR WARNING: SUBSTITUTION WITH UNSPECIFIED IMPAIR INTRINSIC SAFETY. 		4
		U	<u> </u>	<u></u>		<]

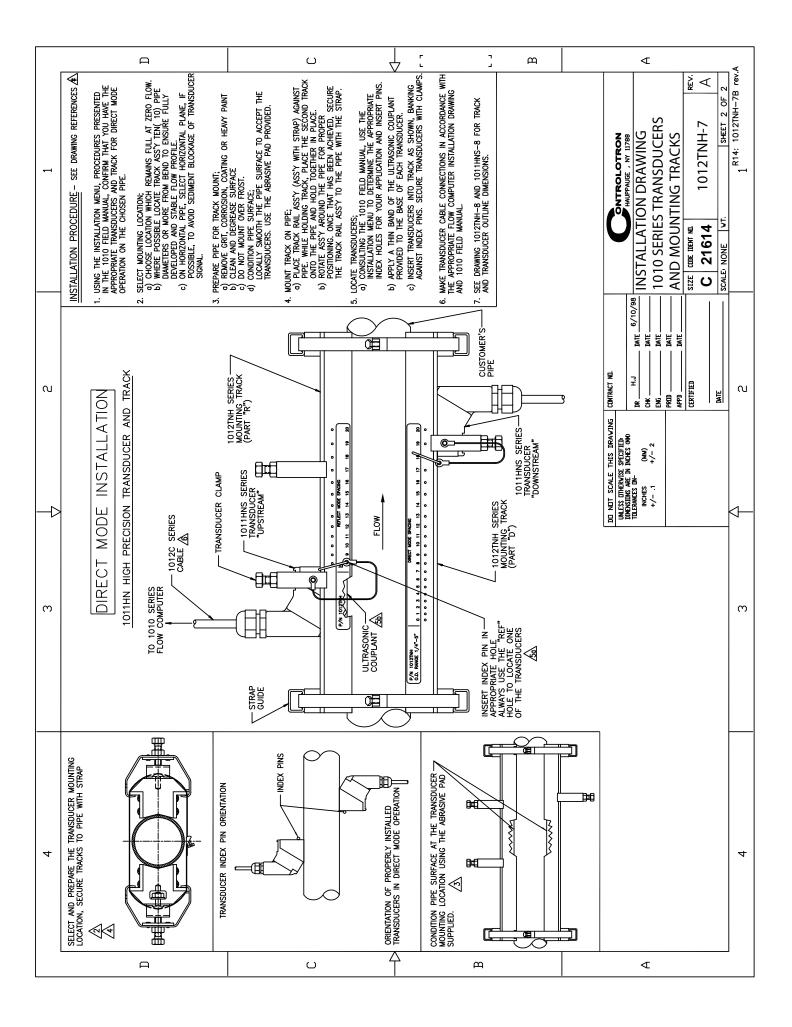

	U		ш	<
-				CHANGES TO THIS DOCUMENT REQUIRE SAFETY AGENCY APPROVAL REQUIRE SAFETY AGENCY APPROVAL INSTALLATION GUIDE, INSTALLATION GUIDE, CONNECTION DIAGRAM SELECTION AGENCY APPROVED 1011HN SERIES TRANSDUCERS SIZE 000 INECTION DIAGRAM SELECTION AGENCY APPROVED 1011HN SERIES TRANSDUCERS REV. SIZE 000 INTHIN SERIES TRANSDUCERS REV. A 21614 1011HN SERIES TRANSDUCERS SCALE: M. 1
2 TO CERTIFIED FLOW COMPUTER SEE NOTES 1 & 2 SEE NOTES 1 & 2 1012 SERIES TRANSDUCER CABLE		DR 1010-464. 423 OR 1010-464.	I APPROPRIATE FLOW COMPUTER FIELD MANUAL IS.	CONTRACT NO. DR. CHEV. DATE 5/16/01 DR. DATE 04 DATE 0
1012		PUTERS- 310-422. C	LOW CON	LATION DII AY Do Not sc ULESS OTHERN HULSS OTHERN HULSS OTHERN HULSS
	ONE TRANSDUCER OR 1011GCHN SERIES TRANSDUCER 1011GCHN SERIES TRANSDUCER	 INSTALL ONE OF THE FOLLOWING TRANSDUCERS P/N 1011HN(MODEL CODES)-(SIZE)-S9 P/N 1011GCHN(MODEL CODES)-(SIZE)-S9 IN ACCORDANCE WITH THE FOLLOWING DRAWINGS: a. FOR USE WITH 1010 SERIES AGENCY APPROVED FLOW COMPUTERS- INTRINSICALLY SAFE EEX ia IIC 75 PER DRAWING 1010-389, 1010-422. OR 1010-464. b. NON-INCENDIVE FOR ZONE 2 PER DRAWING 1010-389, 1010-391, 1010-423 OR 1010-464. 	1011HNFS-7 AND APPROPRIATE F ON INSTRUCTIONS.	3. SEE DRAWING 1011HNS-8 OR 1011HNFS-8 FOR OUTLINE INSTALLATION DIMENSIONS. 4. WARNING: SUBSTITUTION WITH UNSPECIFIED COMPONENTS MAY IMPAIR INTRINSIC SAFETY. IMPAIR INTRINSIC SAFETY. Provide the service of the se
4 TRANSDUCER ID LABEL	(ONE TRANSD	 INSTALL ONE OF THE FOLLOWING TRANSDUCERS P/N 1011HN(MODEL CODES)-(SIZE)-S9 P/N 1011GCHN(MODEL CODES)-(SIZE)-S9 IN ACCORDANCE WITH THE FOLLOWING DRAWINGS: a. FOR USE WITH 1010 SERIES AGENCY APPROVED INTRINSICALLY SAFE EEX ia IIC T5 PER DRAWING 1010- b. NON-INCENDIVE FOR ZONE 2 PER DRAWING 1010- 	2. SEE DRAWING 1011HNS-7 OR 1011HNFS-7 AND FOR ADDITIONAL INSTALLATION INSTRUCTION	3. SEE DRAWING 1011HNS-8 OR 1011HNFS-8 FOR 4. WARNING: SUBSTITUTION WITH UNSPECIFIED IMPAIR INTRINSIC SAFETY. 4
	O	A m		4

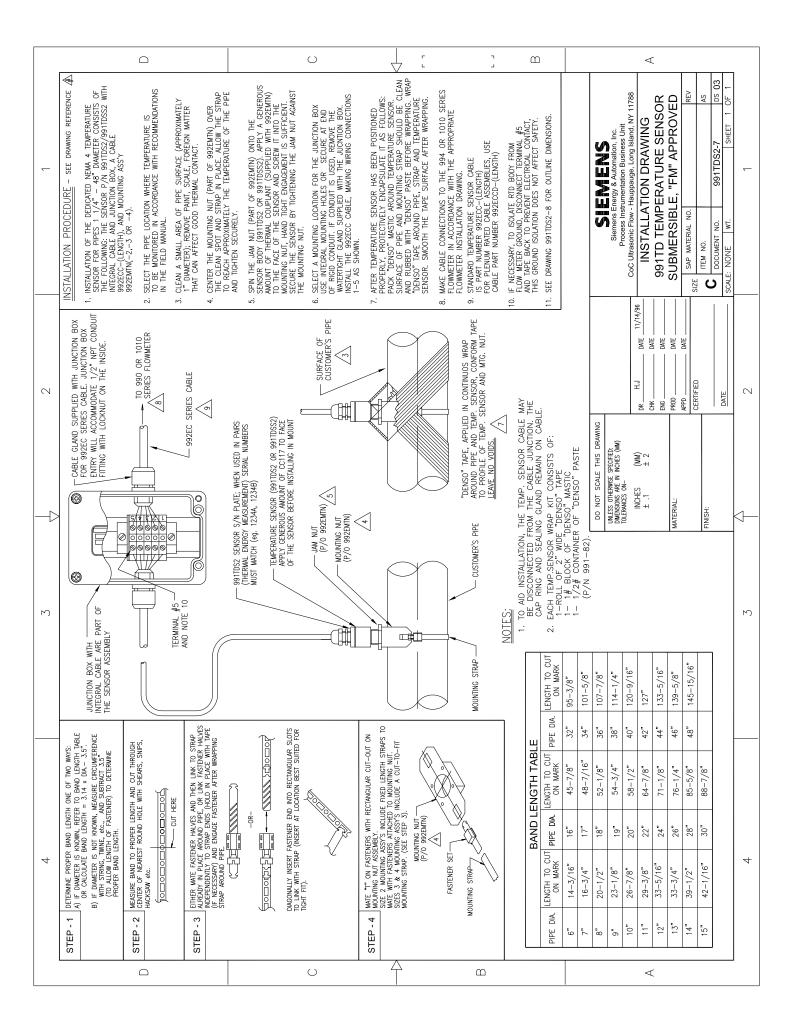


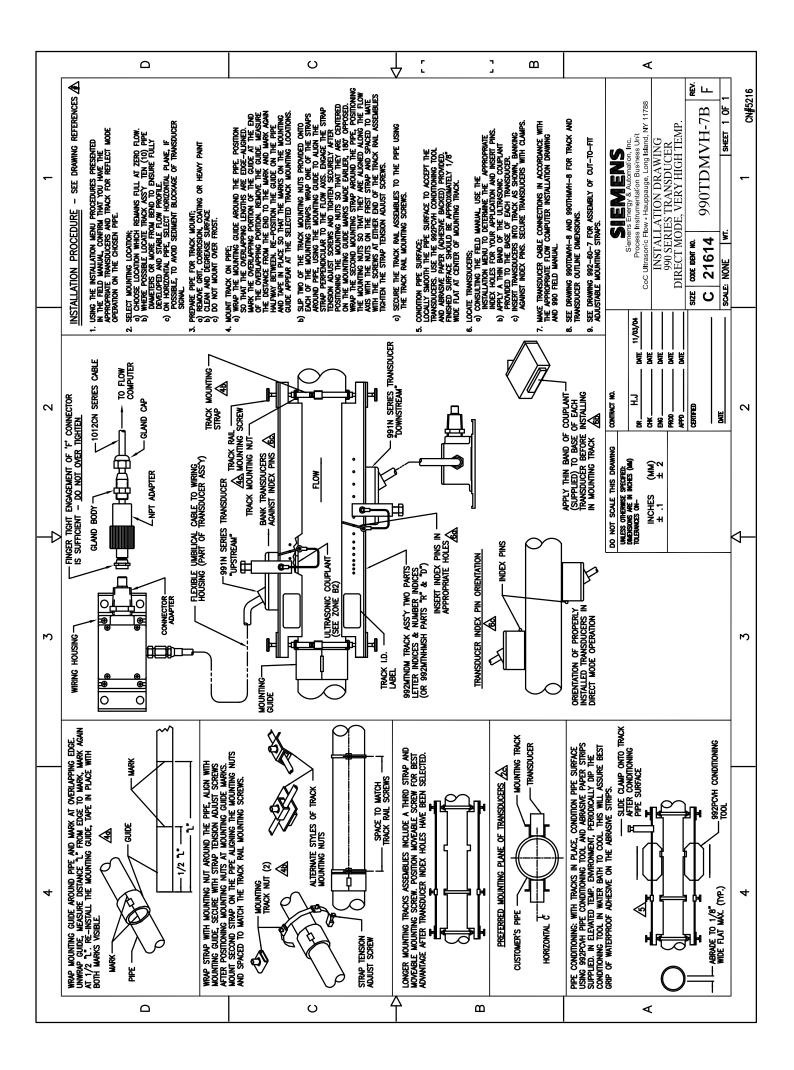


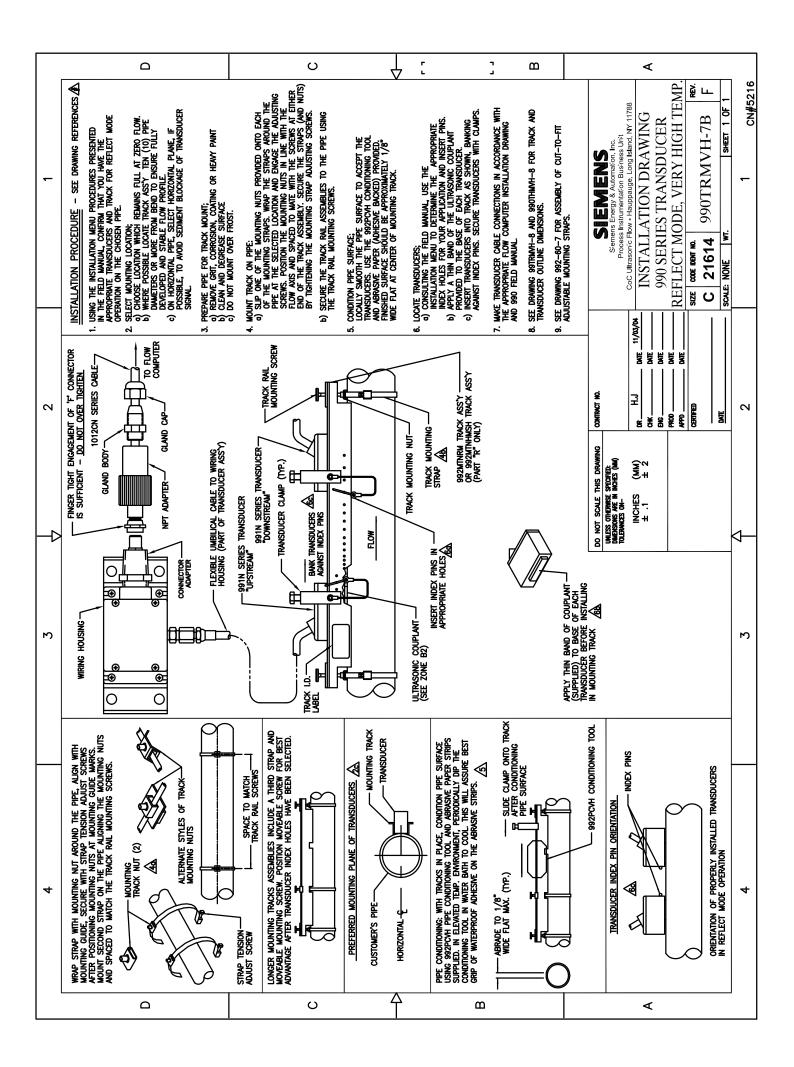












					0	\bigvee	r L	د د	a	ב				∢				_
· · · · · · · · · · · · · · · · · · ·	INSTALLATION PROCEDURE - SEE DRAWING REFERENCE ▲ INSTALLATION OF THE DEDICATED NET 4 TRAVERTURE SENSOR FOR PIPES 1 1/4" - 48" DIAMETER REQUIRES THE FOLLOWING: THE SENSOR 99172(OR 991752), A MOUNTING IN TWO PARTS. UNUCTION 992ECJ AND CABLE 992ECN-(LENGTH) IN TWO PARTS. UNUCTION 992ECJ AND CABLE	992ECC-(LENGTH).SEE NOTE 10. 92. TEMPERATURE SENSORS ARE SUPPLIED IN PAIRS (P/N 99175) FOR THEMAL ENERGY FLOWMETER APPLICATIONS OR SINGLY (P/N 99175S2) FOR TEMPERATURE COMPENSATED MASS FLOWMETER APPLICATIONS.	 SELECT THE PIPE LOCATION WHERE TEMPERATURE IS TO BE MONITORED IN ACCORDANCE WITH RECOMMENDATIONS IN THE FIELD MANUAL. LELAN A SALL AREA OF PIPE SURFACE (APPROXIMATELY CLEAN A SALL AREA OF PIPE SURFACE (APPROXIMATELY CONTENTION, DEVICE CONTENTION, MATTERN ACCOUNTED AND CONTENTION AND CONTENTION AND CONTENTION. 	THAT CAN AFFECT GOOD THERMAL CONTACT. THAT CAN AFFECT GOOD THERMAL CONTACT. THAT CAN AFFECT GOOD THERMAL CONTACT. 5. CENTER THE MOUNTING NUT (PART OF 992EMTN) OVER THE CLEAN SPOT AND STRAP IN PLACE. ALLOW THE STRAP TO REACH APPROXIMATELY THE TEMPERATURE OF THE PIPE AND TIGHTEN SECURELY.	6. SPIN THE JAM NUT (PART OF 992EMTN) ONTO THE SENSOR BODY (991752 OR 9917523). APPLY A GENEROUS AMOUNT OF THERAAL COUPLANT (SUPPLED WITH 992EMTN) TO THE FACE OF THE SENSOR AND SCREW IT INTO THE MOUNTING NUT, HAND TIGHT ENGAGEMENT IS SUFFICIENT. SECURE THE SENSOR BY TIGHTENING THE JAM NUT AGAINST THE MOUNTING NUT.	 SELECT A MOUNTING LOLATION FOR THE 992ECJ JUNCTION BOX. USE INTEGRAL MOUNTING FLANGES OR SECURE AT THE END OF RIGH CONDUT. F CONDUIT S USED, RENOVE THE MERTICHFI GLAND SUPPLED WITH THE 992ECC CABLE. INSTALL THE 992ECC CABLE, MAKING WIRING CONNECTIONS 1–5 AS SHOWN. 	8. MAKE CABLE CONNECTIONS TO THE 994 OR 1010 SERIES FLOWMETER IN ACCORDANCE WITH THE APPROPRIATE FLOWMETER INSTALLATION DRAWING AND INVERTION DAY	9. SHAUNGY LIPPERFERIOUS EXPLOSATION BUT AND SUPEL AND UNITION BUT ARE PART NUMBERS 992ECC-(LENGTH) AND 992ECJ CABLE AND UNITION BUT PART NUMBERS 992ECCD-(LENGTH) AND 992ECJD. 10. SEE DRAWING 991TS2-8 FOR OUTLINE DIMENSIONS.	11. IF NECESSARY, TO ISOLATE RTD BODY FROM FLOW METER GROUND, DISCONNECT TERMINAL #5 AND TAPE BACK TO PREVENT ELECTICAL CONTACT,	IHIS GROUND ISULATION DOES NOT AFFECT SAFETY.		SIEMENS Siemens Enercy & Automation. Inc.	Process Instrumentation Business Unit CoC Ultrasonic Flow - Hauppauge, Long Island, NY 11788	TEMP.SENOR, DEDICATED, NEMA 4	PIPE O.D. 1 1/4"- 48" (32-1220MM)	SIZE SAP MATERIAL NO. REV	C ILEM NO. DOCUMENT NO. 991TS2-7 DS 03 SCAR F. NONF WT SHEET 1 OF 1	
3		Multi HE REPORTED OR 1010		991TS2 SENSOR S/N PLATE; WHEN USED IN PAIRS (THERMAL ENERCY MEASUBEMENT) SERIAL NUMBERS MUST MATCH (eg. 1234A, 1234B) TEMPERATURE SENSOR (991TS2 OR 991TS22) TEMPERATURE SENSOR (991TS2 OR 991TS22)	OF THE SENSOR BEFORE INSTALLING IN MOUNT 4	PERMANENT INSTALLATION / SERVICE NOTE INSULATION IN THE IMMEDIATE VICINITY OF THE 991152 OR 9911522 SENSOR SHOULD BE REMOVABLE TO ALLOW FOR	COLLACESS REQUIRED FOR PERIODIC REFRESHMENT OF COL117 THERMAL COMPOUND. CUSTOMER'S PIPE	FOR HARSH OR HEAVY CONDENSATE ENVIRONMENTS: SERVICE TEMPERATURE RANGE: 40°F TO +150°F CABLE CABLE	CC110 MARRIES CONNECTOR IN CONTAINER OF CC110. 30cc CONTAINER CONPELETELY FILLING AND COATING IT BEFORE PROVIDED CONNECTING 10 9911 TEMP. SENSOR.		DETAIL 'A'	DO NOT SCALE THIS DRAWING UNLESS OTHERWICE SPECAFED	INCLESS OF IN INCLESS OF IN INCLESS OF INCLE	ENG		CERTIFIED	FINISH: DATE	3
	CABLE JUNCTION (992ECJ)	AND NOTE 11	AND				MOUNTING STRAP			PIPE DIA. LENGTH TO CUT ON MARK	32" 95–3/8" 34" 101–5/8"	36" 107–7/8" 38" 114–1/4"		42" 127" 44" 133–5/16"	46" 139–5/8"	48" 145–15/16"		
	FEMINE PROPER BAND LENCH ONE OF TWO WAYS: IF DMAETER IS KNOWN, REFER TO BAND LENCH TABLE OR CALCULATE BAND LENCH = 3.14 × DA- 3.5. IF DMAETER IS NOT KNOWN, MASSURE CRICIMFERANCE WITH STRING, TWINE, etc., AND SUBTRACT 3.5" PROPER BAND LENCHH OF FASTENER) TO DETERMINE PROPER BAND LENCH	ND CUT THROUGH HI SHEARS, SNIPS,	Hen Link To Strap Link Fastener Hall I in Place With Tai Rafter Wrapping		D RECTANGULAR SLO ION BEST SUITED FC	GULAR CUT-OUT ON ED LENGTH STRAPS OUNTING NUT. DE A CUT-TO-FIT			BAND LENGTH TABLE	LENGTH TO CUT PI	45-7/8" 48-7/16"	52-1/8" 54-3/4"	58-1/2"	64-7/8" 71-1/8"	76-1/4"	85-5/8"	88-1/8	
	ND LENGTH ONE WN, REFER TO J LENGTH = 3. KNOWN, MEASI etc., AND SI TH.	OUND HOLE WITH AN OUND HOLE WITH	HALVES AND T UND PIPE, OR AP ENDS (HOLC VGAGE FASTENEI	К К	ISERT AT LOCAT	S WITH RECTAN LY. 'S INCLUDE FIX. ATTACHED TO M 3 ASSY'S INCLU STEP 3).	(P/0 992EMTN)		3AND LEN	PIPE DIA.	16"	18,	20"	22" 24"	26"	28"	30	
4	DETERMINE PROPER BAI A) IF DIAMETER IS KNO OR CALCULATE BANU B) IF DIAMETER IS NOT MITH STRING, TWINE (TO ALLOW LENGTH PROPER BAND LEN	MEASURE BAND TO PROPER LENGTH AND CUT THROUGH CENTER OF NEAREST ROUND HOLE WITH SHEARS, SNIPS, HACKANW BC	ETHER MATE FASTENER HALVES AND THEN LINK TO STRAP ALREADY IN PLACE AROUND PPE, OR LINK FASTENER HALVES MEREDROBINT TO STRAP ENDS (HOLD IN PLACE WITH TAPE (IF RECESSARY) AND NAGAGE FASTENER AFTER WRAPDING STRAP AROUND PPE.		TO LINK WITH STRAP (NUSERT AT LOATION BEST SUITED FOR TO LINK WITH STRAP (NUSERT AT LOATION BEST SUITED FOR TIGHT FIT).	MATE T" ON FASTEMERS WITH RECTANGULAR CUT-OUT ON MOUTTING NUT ASSEMBLY. NULLUE FIXED LENGTH STRAPS TO MATE WITH FASTEMERS INCLUDE FIXED LENGTH STRAPS TO MATE WITH FASTEMERS INCLUDE A CUT-TO-FIT MOUTING STRAP. (SEE STEP 3).	(P/O 9)	MOUNTING STRAP		LENGTH TO CUT ON MARK	14-3/16" 16-3/4"	20-1/2" 23-1/8"	26-7/8"	29-3/8" 33-5/16"	33-3/4"	39-1/2"	42-1/16"	4
	STEP - 1	STEP - 2	STEP - 3	<u> </u>		STEP - 4		W		PIPE DIA.		"o"	10"	11"	13"	14"	15	
	<u> </u>				0			m						∢				-

SIEMENS

DUCTILE IRON PIPE

Nominal	Actual	CLASS 50	SS 50	CLAS	CLASS 51	CLAS	CLASS 52	CLA	CLASS 53	CLAS	CLASS 54	CLA	CLASS 55		CLASS 56	Liner ((Liner (Cement)
Diameter	0.D.	Wall	I.D.	Wall I.D.	I.D.	Wall	I.D.	Wall I.D.	I.D.	Wall I.D.		Wall	I.D.	Wall	I.D.	Single	Double
с	3.96	N/A	N/A	0.25	3.46	0.28	3.40	0.31	3.34	0.34	3.28	0.37	3.22	0.40	3.16	0.125	0.250
4	4.80	N/A	N/A	0.26	4.28	0.29	4.22	0.32	4.16	0.35	4.10	0.38	4.04	0.41	3.98	0.125	0.250
9	6.90	0.25 6.40	6.40	0.28	6.34	0.31	6.28	0.34	6.22	0.37	6.16	0.40	6.10	0.43	6.04	0.125	0.250
8	9.05	0.27 8.51	8.51	0.30	8.45	0.33	8.39	0.36	8.33	0.39	8.27	0.42	8.21	0.45	8.15	0.125	0.250
10	11.10	0.29 10.52	10.52	0.32	10.46	0.35	10.40	0.38	10.34	_	0.41 10.28 0.44 10.22 0.47	0.44	10.22	0.47	10.16	0.125	0.250
12	13.20 0.31 12.58	0.31	12.58	0.34	0.34 12.52 0.37 12.46	0.37		0.40	0.40 12.40	0.43	0.43 12.34 0.46 12.28	0.46	12.28	0.49	12.22	0.125	0.250
14	15.30 0.33 14.64	0.33	14.64	0.36	0.36 14.58 0.39	0.39	14.52	0.42	0.42 14.46	0.45	0.45 14.40 0.48 14.34	0.48	14.34	0.51	0.51 14.28	0.1875	0.375
16	17.40 0.34 16.72	0.34	16.72	0.37	16.66	0.40	16.60	0.43	16.54	0.46	0.37 16.66 0.40 16.60 0.43 16.54 0.46 16.48 0.49 16.42 0.52 16.36	0.49	16.42	0.52	16.36	0.1875	0.375
18	19.50 0.35 18.80	0.35	18.80	0.38	18.74	0.41	18.68	0.44	18.62	0.47	0.38 18.74 0.41 18.68 0.44 18.62 0.47 18.56 0.50 18.50 0.53 18.44	0.50	18.50	0.53	18.44	0.1875	0.375
20	21.60 0.36 20.88	0.36	20.88	0.39	20.82	0.42	20.76	0.45	20.70	0.48	0.39 20.82 0.42 20.76 0.45 20.70 0.48 20.64 0.51 20.58 0.54 20.52	0.51	20.58	0.54	20.52	0.1875	0.375
24	25.80 0.38 25.04	0.38	25.04	0.41	24.98	0.44	24.92	0.47	24.86	0.50	0.41 24.98 0.44 24.92 0.47 24.86 0.50 24.80 0.53 24.74 0.56 24.68	0.53	24.74	0.56	24.68	0.1875	0.375
30	32.00	0.39 31.22	31.22	0.43	0.43 31.14 0.47 31.06 0.51 30.99	0.47	31.06	0.51	30.99	0.55	0.55 30.90 0.59 30.82 0.63 30.74	0.59	30.82	0.63	30.74	0.250	0.500
36	38.30	0.43	0.43 37.44	0.48	0.48 37.34	0.53	37.24	0.58	0.58 37.14		0.63 37.04 0.68 36.94 0.73 36.84	0.68	36.94	0.73	36.84	0.250	0.500
42	44.50	0.47	0.47 43.56	0.53	43.44	0.59	43.32	0.65	0.65 43.20		0.71 43.08 0.77		42.96	0.83	42.84	0.250	0.500
48	50.80	0.51	0.51 49.78	0.58	49.64	0.65	49.50	0.72	49.36		0.79 49.22	0.86	49.08	0.93	48.94	0.250	0.500
54	57.56	0.57	0.57 56.42	0.65	56.26 0.73 56.10	0.73	56.10	0.81	55.94	0.89	0.89 55.78 0.97 55.62	0.97	55.62	1.05	55.46	0.250	0.500

CAST IRON PIPE - AWWA STANDARD

Pipe	CLASS A	CLASS B	CLASS C	CLASS D	CLASS E	CLASS F	CLASS G	CLASS H
Size	O.D Wall I.D.	O.D Wall I.D.	O.D Wall I.D.	O.D Wall I.D.	O.D Wall I.D.	O.D Wall I.D.	O.D Wall I.D.	O.D Wall I.D.
З	3.80 0.39 3.02	3.96 0.42 3.12	3.96 0.45 3.06	3.96 0.48 3.00				
4	4.80 0.42 3.96	5.00 0.45 4.10	5.00 0.48 4.04	5.00 0.52 3.96				
9	6.90 0.44 6.02	7.10 0.48 6.14	7.10 0.51 6.08	7.10 0.55 6.00	7.22 0.58 6.06	7.22 0.61 6.00	7.38 0.65 6.08	7.38 0.69 6.00
8	9.05 0.46 8.13	9.05 0.51 8.03	9.30 0.56 8.18	9.30 0.60 8.10	9.42 0.66 8.10	9.42 0.71 8.00	9.60 0.75 8.10	9.60 0.80 8.00
10	11.10 0.50 10.10	11.10 0.50 10.10 11.10 0.57 9.96	11.40 0.62 10.16	11.40 0.68 10.04	11.60 0.74 10.12	h0.16 11.400.68 h0.04 11.600.74 h0.12 11.600.80 h0.00 11.840.86 h0.12 11.840.92 h0.00	11.84 0.86 10.12	11.84 0.92 10.00
12	13.20 0.54 12.12	13.200.5412.12 13.200.6211.96	13.50 0.68	13.50 0.75 12.00	13.78 0.82 12.14	12.14 13.50 0.75 12.00 13.78 0.82 12.14 13.78 0.89 12.00 14.08 0.97 12.14 14.08 1.04 12.00	14.08 0.97 12.14	14.08 1.04 12.00
14	15.30 0.57 14.16	15.30 0.57 14.16 15.30 0.66 13.96	15.65 0.74 14.17	15.65 0.82 14.01	15.98 0.90 14.18	15.650.7414.1715.650.8214.0115.980.9014.1815.980.9914.0016.3211.0714.1816.3211.07	16.32 1.07 14.18	16.32 1.16 14.00
16	17.40 0.60 16.20	17.400.60 16.20 17.40 0.70 16.00 17.80 0.80 16.20 17.80 0.89 16.02 18.16 0.98 16.20 18.16 0.98 16.20 18.16 1.08 16.00 18.54 1.18 16.18 18.54 1.27 16.00	17.80 0.80 16.20	17.80 0.89 16.02	18.16 0.98 16.20	18.16 1.08 16.00	18.54 1.18 16.18	18.54 1.27 16.00
18	19.50 0.64 18.22	19.50 0.64 18.22 19.50 0.75 18.00 19.92 0.87	19.92 0.87 18.18	19.92 0.96 18.00	20.34 1.07 18.20	718.18 19.92 0.96 18.00 20.34 1.07 18.20 20.34 1.17 18.00 20.78 1.28 18.22 20.78 1.39 18.00	20.78 1.28 18.22	20.78 1.39 18.00
20	21.60 0.67 20.26	21.60 0.67 20.26 21.60 0.80 20.00 22.06 0.92	22.06 0.92 20.22	22.06 1.03 20.00	22.54 1.15 20.24	20.22 22.06 1.03 20.00 22.54 1.15 20.24 22.54 1.27 20.00 23.02 1.39 20.24 23.02 1.51 20.00	23.02 1.39 20.24	23.02 1.51 20.00
24	25.80 0.76 24.28	25.80 0.76 24.28 25.80 0.89 24.02 26.32 1.04		26.32 1.16 24.00	26.90 1.31 24.28	24.22 26.32 1.16 24.00 26.90 1.31 24.28 26.90 1.45 24.00 27.76 1.75 24.26 27.76 1.88 24.00	27.76 1.75 24.26	27.76 1.88 24.00
30	31.74 0.88 29.98	31.74 0.88 29.98 32.00 1.03 29.94 32.40 1.20		30.00 32.74 1.37 30.00 33.10 1.55 30.00 33.46 1.73 30.00	33.10 1.55 30.00	33.46 1.73 30.00		
36	37.96 0.99 35.98	37.960.9935.98 38.301.1536.00 38.701.3639.98 39.161.5836.00 39.601.8036.00 40.042.0236.00	38.70 1.36 39.98	39.16 1.58 36.00	39.60 1.80 36.00	40.04 2.02 36.00		
42	44.20 1.10 42.00	44.20 1.10 42.00 44.50 1.28 41.94 45.10 1.54		42.02 45.58 1.78 42.02				
48	50.50 1.26 47.98	50.50 1.26 47.98 50.80 1.42 47.96 51.40 1.71		47.98 51.98 1.96 48.06				
54	56.66 1.35 53.96	56.66 1.35 53.96 57.10 1.55 54.00 57.80 1.90		54.00 58.40 2.23 53.94				
60	62.80 1.39 60.02	62.80 1.39 60.02 64.40 1.67 60.06 64.20 2.00		60.20 64.82 2.38 60.06				
72	75.34 1.62 72.10	75.34 1.62 72.10 76.00 1.95 72.10 76.88 2.39	76.88 2.39 72.10					
84	87.54 1.72 84.10	87.54 1.72 84.10 88.54 2.22 84.10						

O.D. 0.840 1.056 1.350 1.770 2.245 2.709 3.33 Wall 0.065 0.067 0.019 0.109 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.021 0.010 0.019 0.021 0.019 0.021 0.019 0.021 0.019 0.021 0.019 0.021<	3.500 4.000 3.334 3.834 0.083 0.083 3.260 3.760 0.120 0.120 0.120 0.120 3.068 3.548 0.216 [®] 0.226 [®] 2.900 3.364	5.563 5.345 0.109			<u>+</u>	16	18 20	20 22	24
I.D. 0.710 0.920 1.185 1.530 1.770 Wall 0.065 0.066 0.069		5.345 0.109	8.625	10.750 12.750 14.000 16.000 18.000	14.000 1	6.000 18	.000 20.000		22.000 24.000
I.D. 0.674 0.884 1.097 1.442 1.682 Wall 0.083 0.109 0.109 0.109 0.109 Wall 0.083 0.083 0.109 0.109 0.109 0.109 Wall 0.0824 0.083 0.133 0.1409 0.145 0.145 Wall 0.1095 0.113 0.113 0.1413 0.1410 0.145 0.145 Wall 0.1093 0.113 0.133 0.1413 0.142 1.610 0.145 0.145 Wall 0.109 0.133 0.140 0.142 3.80 1.610 2.00 3.61		00	8.407 0.109	10.482 12.438 13.688 15.670 17.670 19.634 0.134 0.156 0.156 0.165 0.165 0.188	13.6881 0 156 C	15.670 17 0 165 0	17.670 19.63 ⁴ 0 165 0 188		21.624 23.563 0 188 0 218
Wall 0.100 0.113 0.1049 1.101 0.622 0.824 1.0449 1.380 1.610 0.145 Wall 0.109 0.113 0.113 0.113 0.140 1.278 1.500 0.145 Wall 0.109 0.113 0.113 0.140 1.278 1.500 0.145		4.260 5.295 6.357	8.329 0.149		13.624 1	15.624 17	4		+
I.D. 0.546 0.742 0.957 1.278 1.500 Wall A.147 A.154 A.179 A.179 A.191 A.200 Size 1.2 0.546 0.742 0.957 1.278 1.500 Wall A.147 A.154 A.179 A.179 A.191 A.200 Size 1.2 3.4 1 11/4 11/2 2 21/2 3 3 OD 0.840 0.742 0.996 1.315 1.660 1.900 2.375 2.875 3.690 3.68 3.69		8	7.981		200				
Size 0.D. 0.D. 0.D. 0.D. 0.D. 0.D. 0.D. 0.D	^.300 ^.318	0.250 0.250 0.250 3.826 4.813 5.761 A.337 A.375 A.432	7.625 ^.500	9.750 * .500 • .500 * .500					
Size O.D. 0.1.D. U.1.D. 1.1.D. Wall Wall U.1.D. Wall Wall Wall Wall	STEEL	PVC⊳	ш	4			-	-	-
0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	6 8 10	12 14 16 18	8 20 22	24 26	28 30	32	34 36	42	
Wall 1.D 1.D 1.D 1.D 1.D 1.D 1.D 1.D	8.625 10.750	14.000 16.000 18	20.000		28.000 30.000	32.000	34.000 36.000 42.000	42.000	
Nall 1.D. Nall 1	6.065 7.981 10.020 0.280 0.322 0.365	0.375 0.375 0.	19.250 0.375	23.250 25.250 0.375 0.375	27.250 29.250 0.375	31.250 0.375		41.250 * .375	
wall I.D. Wall	5.761 7.625 9.750	13.000 15.000	19.000	23.000 25.000	27.000 29.000	31.000	35.000	41.000 * 500	
Wall Wall U.D. Wall I.D. Wall I.D. Wall I.D. Wall I.D. Wall I.D. Wall I.D. Wall I.D. Wall Vall Vall Vall Vall Vall Vall Vall	0.432 0.300 0.300 1 607 6 876 8 760	U.20U U.20U U.20U U.20U	nne-n			nnc:n		onc.	
Nall 1. D.	0.864 0.875 1.000	1.000							
Walt 1.1.D Walt Walt 1.1.D Walt 1.1.D Walt 1.1.D Walt 1.1.D Walt 1.1.D Walt 1.1.D Walt 1.1.D Walt 1.1.D Walt Main Walt Main		13.500 15.500 17.5	500 19 500 21 500	23.500 25.376	7.376 29.376	31.376 33	376 35.376		
L.D. L.D. L.D. L.D. L.D. L.D. L.D. L.D.		0.250 0.250 0.250 0.250 0.250 0.250 0.312 0.312 0.312 0.312 0.312 0.312 0.312	250 0.250 0.250	0.250 0.312	0.312 0.31	2 0.312 0	312 0.312		
1.D. Wall 1.D. 1.D. 1.D. 1.D. 1.D. Wall 1.D. Wall 1.D. Wall 1.D. Wall	8.125 10.250 12.250 0.250 0.250	13.3/6 15.3/6 0.312 0.312	17.376 19.250 21.250 0.312 0.375® 0.375®	23.250 25.000 27.000 29.000 31.000 33.000 35.000 41.000 0.375° ^.500 ^.500 ^.500 ^.500 ^.500 ^.500 ^.500	^.500 ^.500	• 31.000 33 •.500 •.1	33.000 35.000 41.000 ^.500 ^.500 ^.500	41.000 ^.500	
LD. LD. Wall LD. LD. LD. Wall LD. Wall LD. Wall Wall Wall Wall Wall Wall		12.090 13.250 15.250 17.1 0 330 0 375® 0 375® 0 4'	38 A 500 21.000	22.876 2	26.750 28.750 30.75 0.625 0.625 0.625	0 825 01	32.750 34.750 A	40.750 * 625	
Wall I.D. I.D. I.D. Vall I.D. Vall Vall Vall	7.981 10.020	13.124 15.000	-	0	0.040		040.0	070.	
Wall End Mail Mail <thm< td=""><td>0.322® 0.365® 7.813 9.750</td><td>10</td><td>32 0.593 00 18.376 20.250</td><td>0.687 22.064</td><td>NO</td><td>N-STA</td><td>NON-STANDARD</td><td>CARBON</td><td>N</td></thm<>	0.322® 0.365® 7.813 9.750	10	32 0.593 00 18.376 20.250	0.687 22.064	N O	N-STA	NON-STANDARD	CARBON	N
Number of the state	0.406 A.500	0.562 0.593 0.656 0.750 0.812 0.875 0.968	50 0.812 0.875		0.10		ç	2	2
I.D. I.D. I.D. Mail I <	A.432 A.500 0.593	0.687	37 1.031 1.125		AILE	2	20	2 4	4 4
I.D. I.D. I.D. I.D. Wall I.D. I.D. I.D. Wall I.D. I.D. I.D. Wall 0.187 0.218 0.250 0.261 0.343 0.375 0.438	9.314 0.718	11.064 12.126 13.938 15.688 17.438 19.250 20.938 0.843 0.937 1.031 1.156 1.281 1.375 1.531	88 17.438 19.250 56 1.281 1.375		0.D.	10.750	20.000	24.000	24.000
I.D. I.D. <th< td=""><td>5.501 7.189 9.064 0.562 0.718 0.843</td><td>10.750</td><td>250 17.000 18.750 25 1 500 1 625</td><td></td><td></td><td>10 192</td><td>19 375</td><td>23 375 2</td><td>22 126</td></th<>	5.501 7.189 9.064 0.562 0.718 0.843	10.750	250 17.000 18.750 25 1 500 1 625			10 192	19 375	23 375 2	22 126
waii 1.D. 0.466 0.614 0.815 1.160 1.338 1.689 2.125 2.624 Wali 0.187 0.218 0.250 0.251 0.343 0.375 0.438	7.001 8.750	10.500 11.500 13.124 14.8	14.876 16.500 18.250 19.876	19.876				_	
Wall 0.187 0.218 0.250 0.250 0.281 0.343 0.375 0.438	0.812 1. 6.813 8	11.188	02 1.750 1.875 438 16.064 17.750		Wall	0.273	0.312	210.0	0.337
	0.906	1.312 1.406 1.593 1.7	781 1.968 2.125	_	The above sizes dimensions do no dard or schedule.	e sizes ar s do not hedule.	e produce conform t	The above sizes are produced by pipe mills but dimensions do not conform to any regular stan- dard or schedule.	mills bı ılar star
$ ^{\Delta}$ These materials are generally available in Schedules 40 and 80 only	8	Wall thickness identical with thickness of "Standard Weight" pipe.	n thickness of	* "Standard \	Neight" p	ipe.			
♦ Wall Thickness of Schedule 5S & 10S does not permit threading in accordance with the American Standard for Pipe Threads (ASA No. B2)	2.1)	 Wall Thickness identical with thickness of "Extra-Heavy" pipe. * Those do not conform to Amorinan Standard Disc. 10 	th thickness c	of "Extra-Hea	avy" pipe.				
	-		ובוורמון טומוח			٦			
				PIPE WEIGHT FORMULA FOR STEEL PIPE (Ibs per foo	T FORMU	JLA FOR	STEEL P	PIPE (Ibs per foot)	er foot
				10.00 (0-1) 1,				מ ו– געמוו דוו	

Siemens Industry Inc. Industry Automation Division Coc Ultrasonic Flow Hauppauge, New York 11788 USA Web: www.usa.siemens.com

Glossary

Active Memory

Section of RAM allocated for active site parameters (all current values). The flow meter receives site-specific operating instructions from Active Memory.

Alphanumeric Field

An 8-character data entry field that allows you to specify a Site Name or a Security code.

Arrow Keys

Use the <Up, Down, Left and Right> Arrows to navigate through the Installation Menu in their respective directions. The <Up or Down> Arrows allow you also to scroll through option list items.

Asterisk

Refers to the marker used in the Installation Menu to indicate a current option list selection. When you access an option list, you can move the asterisk with the <Up or Down> Arrows to a new selection, then press <ENTER> to select the item.

CLR (Clear) Key

Use the <CLR> key to erase a numeric value or clear a selection from a multiple select option list.

Cursor

This refers to the highlighted text and the arrow cursor that you move via the arrow direction when navigating through menus or menu cells.

Data Entry

Refers to data entered into a menu cell (either numeric or option list selection).

Datalogger Memory

Memory segment that stores data items logged during operation. You can view the Datalogger contents either on-screen or transmit it to an external device via the RS-232 serial port. The amount of Datalogger memory depends on how many sites reside in Site Storage memory.

ENTER Key

Use the <ENTER> key to store a current numeric value or option list item.

Flow Meter

Refers to the flow meter itself (the transmitter and sensors combined).

Graphic Screen

Refers to the integral LCD display screen.

Initial Makeup

An internal process performed during installation, where the flow meter acquires its receive signal and enhances other parameters for optimal operation at a site.

In-process Makeup

An internal process where the flow meter recovers its Initial Makeup parameters after a fault condition interrupts operation.

Installation Menu

The flow meter's overall menu structure. It allows you to define all aspects of operation for the flow meter.

Interface m/s

Refers to an alarm function that declares the passage of a liquid or gas interface by a comparison analysis of the relative sonic velocities of the two liquids or two gases.

LAPTOT

Refers to a system function that freezes the Totalizer display, while the Totalizer continues to update its registers.

Local Display

Refers to the transmitter integral display screen.

Menu

Sub-sections of the Installation Menu that allow you to define specific operational functions (e.g., RS-232 Setup).

Menu Cell	A location within a menu where you can define either a single numeric value or option list selection that supports the Sub-Menu's function. Certain view-only menu cells show reference data appropriate to the current application.	
NEGFLOW	Totalizer mode for negative flow total only.	
NETFLOW	Totalizer mode that combines positive and negative flow totals.	
ΝΟΤΟΤ	System function that disables the internal Totalizer.	
Number Index	Computed sensor spacing index based on the estimated sonic velocity measurement. This Index can not be overridden by installer.	
Numeric Data	Refers to a value entered into a menu cell. An example would be the pipe outer diameter.	
Numeric Entry	Refers to a number you type into menu cell that stores numeric data.	
Numeric Keys	Use the Numeric keys to type a numeric value where appropriate.	
Op Sys ROM	The Read-Only-Memory that stores the basic operating instructions and permanent defaults of the flow meter's operating system.	
Option List	Lists of options presented at menu cells that allow you to select either a single item or multiple items (depending on the function that the menu cell controls).	
Parameters	Refers to value (either numeric or list selection) stored in a menu cell.	
FUS1010 IP65 NEMA 4X & IP66 NEMA 7		

POSFLOW	Totalizer mode for positive flow total only.	
Register	Refers to a memory location used by the flow meter to store data such as the flow total, etc.	
RTD	Resistive Temperature Device. Temperature sensors used with energy flow of mass flow systems.	
Sensor	Refers to entire spool piece, in some instances. Also flow sensors that the flow meter uses to measure the flow rate. Also called transducers and abbreviated as Xdcr.	
Site Name	A user-entered name that the flow meter associates with a stored Site Setup. You retrieve a particular Site by selecting its name from a site name list.	
Site Setup	A collection of parameters used by the flow meter to service a specific site (or location). The flow meter allows you to store several independent Site Setups.	
Site Storage Memory		
	Section of RAM allocated for permanent data storage. This memory segment stores inactive site setups (including a backup of active site). The flow meter's Site Setup storage capacity depends on the dynamic memory allocation as dictated by each application. In addition, the flow meter uses Site Storage Memory to store configurable operating parameters such as pipe, liquid or gas tables.	
Si-Ware	Siemens software program that interfaces with Siemens flow meters to assess flow meter installation conditions and to collect data for comparison with prior baseline data.	
Spacing Index	Refers to the Number Index used by the flow meter to determine the space between the upstream and downstream sensors on clamp-on systems.	

Spacing Offset	
	Fixed sensor offset assigned by the flow meter. This can be overridden by the installer.
TOTCNT	A Totalizer pulse count function used for Batching or Sampling.
Transducer	
	Also known as sensor.
Vaer	The flow meter's aeration percent output.
Vps	
vha	The sonic propagation velocity of a pipe.
Vs	
	The sonic velocity of a liquid or gas.

Glossary

Index

1

1012T Sensor Mounting Tracks Direct Mode, 72 Reflect Mode, 69

2

2-Channel, 28 2-Path, 29

4

4-Channel, 28 4-Path, 30

Α

Actual MTY Command, 85 Analog Input Setup, 118 Setting analog input current, 119 Analog Out Setup, 115 Setting Io current output, 116 Setting Pgen analog output, 117 Setting Vo voltage output, 117

В

Basic Requirements, 34

С

CE marked equipment, 13 CE-mark, 13 Channel 1+2 and Channel 1-2, 30 Connecting Power, 39 Connecting Sensors to the Transmitter, 80 Customer Support Hotline, 155

D

Damping Control, 127 Datalogger

FUS1010 IP65 NEMA 4X & IP66 NEMA 7 Operating Instructions, 01/2013, A5E02951520-AC Circular Memory, 126 Clear Logger data, 126 Control menu, 124 Display screen setup, 125 Est LogTime Left, 126 RS-232 output, 125 Deadband Control, 128 Decontamination, 156 Description, 21 Device inspection, 9 Digital Damping Control:(Hot Key 1 and 2), 164 Drawings Installation and Outline, 221

Е

Empty Pipe Set, 85 Expanded I/O Module, 120 Identification, 121 Programming, 123

F

F4 Reset, 161 Clearing Active Memory, 161 Clearing All Saved Memory, 162 Flow Calibration Factor, 32 Flow Meter Types, 27 Flow Profile Compensation, 25 Flow Rate Calibration Methods, 213 Calibration Tables, installation, 215 Intrinsic Calibration (factory), 213 Kc Calibration (Slope Correction), 214 Flow Units Selecting, 104

Η

Hazardous area Safety information, 16 Hazardous area safety requirements, 15 History, 10 Hotline, 155

I

I/O Module, 121
Installation Safety instructions, 33
Installation Menu Navigating and Keypad functions, 46
Installation Menu Chart, 88
Internet Contact person, 156 Support, 155

L

Lithium batteries Safety, 13 Logger Control, 124 Ltn Menu Cell, 61

Μ

Maintenance, 155 Memory Control Menu, 132 Defragment, 132 Log Memory Left, 132 Memory Map, 132 Memory Delay, 129 Memory/Fault Set, 129 Model Numbers, 22 MTYmatic command, 87

0

Output Trim Current, 134 Pgen, 136 Voltage, 135

Ρ

Pipe Mounting, 35 Preliminary Procedures Reflect and Direct Sensor Mounting, 53 Pressure Safety instructions, 33

R

Reflexor Diagnostic Data, 149 Operating Mode and Installation, 140 Spectra Graph, 145 Relay Functions, 130 Repair, 155 Resistive Temperature Device (RTD) Calibration, 137 Ice Bath RTD Calibration, 139 Return procedures, 156 RS-232 Serial Port Connections, 202 Interface Cable, 203 RS-232 Setup, 107

S

Safety, 11 Sensor installation, 33 Sensors Forced Transmit and Forced Frequency, 177 Identification, 57 Installation, Direct Mount, 64 Mounting Strap Kits, 55 Mounting Supplies, 55 Selecting, 59 Typical Labels, 58 Service. Set Empty command, 87 Site Setup Data Menu, 172 HF Diagnostic Menu Item, 173 SITRANS FUS1010 Transmitters, 21 SmartSlew, 127 Span Data Setting, 113 Support, 155 Symbols, 12

Т

Temperature Sensors Mounting, Clamp-on, Insert (Thermowell), 78 Test Facilities Command Modes, 164 Graphic Screens, 162 Hot Key Summary, 171 Theory of Operation, 24 Time Average, 127 Totalizer Mode Controls, 107 Totalizer Modes, 105 Transmitter Labels, 22 Typical Flowmeter Applications, 23 Typical Industries Serviced, 24

U

UniMass Table, 93 Using 1012T Sensor Mounting Tracks, 69

W

Wall Mounting, 35 Warning symbols, 12 Wide Beam Transmission, 31 Wiring Expanded I/O Module, 185 I/O Module, 181 Wiring Temperature Sensor to the Analog Input Module, 43

Ζ

Zero Flow Compensation Methods, 109 Actual Zero, 109 AutoZero, 109 ReversaMatic, 109 ZeroMatic, 110 Index

Get more information

www.siemens.com/flow

Siemens Industry, Inc. Industry Automation Division CoC Ultrasonic Flow Hauppauge, NY 11788 USA Subject to change without prior notice Order No.: A5E02951520-AC Printed in the USA © Siemens AG 01.2013

www.siemens.com/processautomation